
Uplink Documentation
Release 0.6.1

Raj Kumar

Jan 07, 2019





Contents

1 Features 3

2 User Testimonials 5

3 User Manual 7
3.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Quickstart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Serialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6 Tips & Tricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 API Reference 23
4.1 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Miscellaneous 41
5.1 Changelog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Python Module Index 47

i



ii



Uplink Documentation, Release 0.6.1

A Declarative HTTP Client for Python. Inspired by Retrofit.

Note: Uplink is in beta development. The public API is still evolving, but we expect most changes to be backwards
compatible at this point.

Uplink turns your HTTP API into a Python class.

from uplink import Consumer, get, headers, Path, Query

class GitHub(Consumer):
"""A Python Client for the GitHub API."""

@get("users/{user}/repos")
def get_repos(self, user: Path, sort_by: Query("sort")):

"""Get user's public repositories."""

Build an instance to interact with the webservice.

github = GitHub(base_url="https://api.github.com/")

Then, executing an HTTP request is as simply as invoking a method.

repos = github.get_repos(user="octocat", sort_by="created")

The returned object is a friendly requests.Response:

print(repos.json())
# Output: [{'id': 64778136, 'name': 'linguist', ...

For sending non-blocking requests, Uplink comes with support for aiohttp and twisted (example).

Contents 1

http://square.github.io/retrofit/
https://github.com/prkumar/uplink
https://pypi.python.org/pypi/uplink
https://github.com/prkumar/uplink/blob/master/LICENSE
https://codecov.io/gh/prkumar/uplink
https://gitter.im/python-uplink/Lobby?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge
http://docs.python-requests.org/en/master/api/#requests.Response
https://aiohttp.readthedocs.io/en/stable/structures.html#module-aiohttp
https://twistedmatrix.com/documents/current/api/twisted.html
https://github.com/prkumar/uplink/tree/master/examples/async-requests


Uplink Documentation, Release 0.6.1

2 Contents



CHAPTER 1

Features

• Quickly Define Structured API Clients

– Use decorators and type hints to describe each HTTP request

– JSON, URL-encoded, and multipart request body and file upload

– URL parameter replacement, request headers, and query parameter support

• Bring Your Own HTTP Library

– Non-blocking I/O support for Aiohttp and Twisted

– Supply your own session (e.g., requests.Session) for greater control

• Easy and Transparent Deserialization/Serialization

– Define custom converters for your own objects

– Support for marshmallow schemas and handling collections (e.g., list of Users)

• Extendable

– Install optional plugins for additional features (e.g., protobuf support)

– Compose custom response and error handling functions as middleware

• Authentication

– Built-in support for Basic Authentication

– Use existing auth libraries for supported clients (e.g., requests-oauthlib)

Uplink officially supports Python 2.7 & 3.3-3.7.

3

https://github.com/prkumar/uplink/tree/master/examples/async-requests
http://docs.python-requests.org/en/master/api/#requests.Session
https://github.com/prkumar/uplink/tree/master/examples/marshmallow
https://github.com/prkumar/uplink-protobuf
https://github.com/requests/requests-oauthlib


Uplink Documentation, Release 0.6.1

4 Chapter 1. Features



CHAPTER 2

User Testimonials

Michael Kennedy (@mkennedy), host of Talk Python and Python Bytes podcasts-

Of course our first reaction when consuming HTTP resources in Python is to reach for Requests. But for
structured APIs, we often want more than ad-hoc calls to Requests. We want a client-side API for our
apps. Uplink is the quickest and simplest way to build just that client-side API. Highly recommended.

Or Carmi (@liiight), notifiers maintainer-

Uplink’s intelligent usage of decorators and typing leverages the most pythonic features in an elegant and
dynamic way. If you need to create an API abstraction layer, there is really no reason to look elsewhere.

5

https://twitter.com/mkennedy
https://twitter.com/TalkPython
https://twitter.com/pythonbytes
https://github.com/liiight
https://github.com/notifiers/notifiers


Uplink Documentation, Release 0.6.1

6 Chapter 2. User Testimonials



CHAPTER 3

User Manual

Follow this guide to get up and running with Uplink.

3.1 Installation

3.1.1 Using pip

With pip (or pipenv), you can install Uplink simply by typing:

$ pip install -U uplink

3.1.2 Download the Source Code

Uplink’s source code is in a public repository hosted on GitHub.

As an alternative to installing with pip, you could clone the repository,

$ git clone https://github.com/prkumar/uplink.git

then, install; e.g., with setup.py:

$ cd uplink
$ python setup.py install

3.1.3 Extras

These are optional integrations and features that extend the library’s core functionality and typically require an addi-
tional dependency.

When installing Uplink with pip, you can specify any of the following extras, to add their respective dependencies to
your installation:

7

https://github.com/prkumar/uplink


Uplink Documentation, Release 0.6.1

Extra Description
aiohttp Enables uplink.AiohttpClient, for sending non-blocking requests and receiving awaitable

responses.
marshmallowEnables uplink.MarshmallowConverter, for converting JSON responses directly into

Python objects using marshmallow.Schema.
twisted Enables uplink.TwistedClient, for sending non-blocking requests and receiving Deferred

responses.

To download all available features, run

$ pip install -U uplink[aiohttp, marshmallow, twisted]

3.2 Quickstart

Ready to write your first API client with Uplink? This guide will walk you through what you’ll need to know to get
started.

First, make sure you’ve installed (or updated) Uplink:

$ pip install -U uplink

3.2.1 Defining an API Client

Writing a structured API client with Uplink is very simple.

To start, create a subclass of Consumer. For example, here’s the beginning of our GitHub client (we’ll add some
methods to this class soon):

from uplink import Consumer

class GitHub(Consumer):
...

When creating an instance of this consumer, we can use the base_url constructor argument to identify the target
service. In our case, it’s GitHub’s public API:

github = GitHub(base_url="https://api.github.com/")

Note: base_url is especially useful for creating clients that target separate services with similar APIs; for example,
we could use this GitHub consumer to also create clients for any GitHub Enterprise instance for projects hosted outside
of the public GitHub.com service. Another example is creating separate clients for a company’s production and staging
environments, which are typically hosted on separate domains but expose the same API.

So far, this class looks like any other Python class. The real magic happens when you define methods to interact with
the webservice using Uplink’s HTTP method decorators, which we cover next.

3.2.2 Making a Request

With Uplink, making a request to a webservice is as simple as invoking a method.

8 Chapter 3. User Manual

https://github.com/prkumar/uplink/tree/master/examples/async-requests
https://github.com/prkumar/uplink/tree/master/examples/marshmallow
https://github.com/prkumar/uplink/tree/master/examples/marshmallow
https://marshmallow.readthedocs.io/en/latest/api_reference.html#marshmallow.Schema
https://github.com/prkumar/uplink/tree/master/examples/async-requests
https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html
https://github.com


Uplink Documentation, Release 0.6.1

Any method of a Consumer subclass can be decorated with one of Uplink’s HTTP method decorators: get, post,
put, patch, head, and delete:

class GitHub(Consumer):
@get("repositories")
def get_repos(self):

"""List all public repositories."""

As shown above, the method’s body can be left empty.

The decorator’s first argument is the resource endpoint (this is the relative URL path from base_url, which we
covered above):

@get("repositories")

You can also specify query parameters:

@get("repositories?since=364")

Finally, invoke the method to send a request:

>>> github = GitHub(base_url="https://api.github.com/")
>>> github.get_repos()
<Response [200]>
>>> _.url
https://api.github.com/repositories

By default, uplink uses Requests, so the response we get back from GitHub is wrapped inside a requests.
Response instance. (If you want, you can swap out Requests for a different backing HTTP client, such as aiohttp.)

3.2.3 URL Manipulation

Resource endpoints can include URI template parameters that depend on method arguments. A simple URI parameter
is an alphanumeric string surrounded by { and }.

To match the parameter with a method argument, either match the argument’s name with the alphanumeric string, like
so:

@get("users/{username}")
def get_user(self, username): pass

or use the Path annotation.

@get("users/{username}")
def get_user(self, name: Path("username")): pass

Query parameters can also be added dynamically by method arguments.

@get("users/{username}/repos")
def get_repos(self, username, sort: Query): pass

For “catch-all” or complex query parameter combinations, a QueryMap can be used:

@get("users/{username}/repos")
def get_repos(self, username, **options: QueryMap): pass

You can set static query parameters for a method using the params decorator.

3.2. Quickstart 9

https://github.com/requests/requests
http://docs.python-requests.org/en/master/api/#requests.Response
http://docs.python-requests.org/en/master/api/#requests.Response
https://tools.ietf.org/html/rfc6570


Uplink Documentation, Release 0.6.1

@params({"client_id": "my-client", "client_secret": "****"})
@get("users/{username}")
def get_user(self, username): pass

params can be used as a class decorator for query parameters that need to be included with every request:

@params({"client_id": "my-client", "client_secret": "****"})
class GitHub(Consumer):

...

3.2.4 Header Manipulation

You can set static headers for a method using the headers decorator.

@headers({
"Accept": "application/vnd.github.v3.full+json",
"User-Agent": "Uplink-Sample-App"

})
@get("users/{username}")
def get_user(self, username): pass

headers can be used as a class decorator for headers that need to be added to every request:

@headers({
"Accept": "application/vnd.github.v3.full+json",
"User-Agent": "Uplink-Sample-App"

})
class GitHub(Consumer):

...

A request header can depend on the value of a method argument by using the Header function parameter annotation:

@get("user")
def get_user(self, authorization: Header("Authorization"):

"""Get an authenticated user."""

3.2.5 Request Body

The Body annotation identifies a method argument as the the HTTP request body:

@post("user/repos")
def create_repo(self, repo: Body): pass

This annotation works well with the keyword arguments parameter (denoted by the ** prefix):

@post("user/repos")
def create_repo(self, **repo_info: Body): pass

Moreover, this annotation is useful when using supported serialization formats, such as JSON and Protocol Buffers.
Take a look at this guide for more about serialization with Uplink.

10 Chapter 3. User Manual

https://github.com/prkumar/uplink-protobuf


Uplink Documentation, Release 0.6.1

3.2.6 Form Encoded, Multipart, and JSON Requests

Methods can also be declared to send form-encoded, multipart, and JSON data.

Form-encoded data is sent when form_url_encoded decorates the method. Each key-value pair is annotated with
a Field annotation:

@form_url_encoded
@patch("user")
def update_user(self, name: Field, email: Field): pass

Multipart requests are used when multipart decorates the method. Parts are declared using the Part annotation:

@multipart
@put("user/photo")
def upload_photo(self, photo: Part, description: Part): pass

JSON data is sent when json decorates the method. The Body annotation declares the JSON payload:

@json
@patch("user")
def update_user(self, **user_info: uplink.Body):

"""Update an authenticated user."""

Alternatively, the Field annotation declares a JSON field:

@json
@patch("user")
def update_user_bio(self, bio: Field):

"""Update the authenticated user's profile bio."""

3.2.7 Handling JSON Responses

Many modern public APIs serve JSON responses to their clients.

If your Consumer subclass accesses a JSON API, you can decorate any method with returns.json to directly
return the JSON response, instead of a response object, when invoked:

class GitHub(Consumer):
@returns.json
@get("users/{username}")
def get_user(self, username):

"""Get a single user."""

>>> github = GitHub("https://api.github.com")
>>> github.get_user("prkumar")
{'login': 'prkumar', 'id': 10181244, ...

You can also target a specific field of the JSON response by using the decorator’s member argument to select the
target JSON field name:

class GitHub(Consumer):
@returns.json(member="blog")
@get("users/{username}")
def get_blog_url(self, username):

"""Get the user's blog URL."""

3.2. Quickstart 11



Uplink Documentation, Release 0.6.1

>>> github.get_blog_url("prkumar")
"https://prkumar.io"

Note: JSON responses may represent existing Python classes in your application (for example, a GitHubUser).
Uplink supports this kind of conversion (i.e., deserialization), and we detail this support in the next guide.

3.2.8 Persistence Across Requests from a Consumer

The session property of a Consumer instance exposes the instance’s configuration and allows for the persistence
of certain properties across requests sent from that instance.

You can provide default headers and query parameters for requests sent from a consumer instance through its
session property, like so:

class GitHub(Consumer):

def __init__(self, username, password)
# Creates the API token for this user
api_key = create_api_key(username, password)

# Send the API token as a query parameter with each request.
self.session.params["api_key"] = api_key

@get("user/repos")
def get_user_repos(self, sort_by: Query("sort")):

"""Lists public repositories for the authenticated user."""

Headers and query parameters added through the session are applied to all requests sent from the consumer instance.

github = GitHub("prkumar", "****")

# Both `api_key` and `sort` are sent with the request.
github.get_user_repos(sort_by="created")

Notably, in case of conflicts, the method-level headers and parameters override the session-level, but the method-level
properties are not persisted across requests.

3.2.9 Response and Error Handling

Sometimes, you need to validate a response before it is returned or even calculate a new return value from the response.
Or, you may need to handle errors from the underlying client before they reach your users.

With Uplink, you can address these concerns by registering a callback with one of these decorators:
response_handler and error_handler.

response_handler registers a callback to intercept responses before they are returned (or deserialized):

def raise_for_status(response):
"""Checks whether or not the response was successful."""
if 200 <= response.status <= 299:

raise UnsuccessfulRequest(response.url)

# Pass through the response.

(continues on next page)

12 Chapter 3. User Manual



Uplink Documentation, Release 0.6.1

(continued from previous page)

return response

class GitHub(Consumer):
@response_handler(raise_for_status)
@post("user/repo")
def create_repo(self, name: Field):

"""Create a new repository."""

error_handler registers a callback to handle an exception thrown by the underlying HTTP client (e.g.,
requests.Timeout):

def raise_api_error(exc_type, exc_val, exc_tb):
"""Wraps client error with custom API error"""
raise MyApiError(exc_val)

class GitHub(Consumer):
@error_handler(raise_api_error)
@post("user/repo")
def create_repo(self, name: Field):

"""Create a new repository."""

To apply a callback onto all methods of a Consumer subclass, you can simply decorate the class itself:

@error_handler(raise_api_error)
class GitHub(Consumer):

...

Notably, the decorators can be stacked on top of one another to chain their behaviors:

@response_handler(check_expected_headers) # Second, check headers
@response_handler(raise_for_status) # First, check success
class TodoApp(Consumer):

...

3.3 Authentication

This section covers how to do authentication with Uplink.

3.3.1 Basic Authentication

In v0.4, we added the auth parameter to the uplink.Consumer constructor.

Now it’s simple to construct a consumer that uses HTTP Basic Authentication with all requests:

github = GitHub(BASE_URL, auth=("user", "pass"))

3.3.2 Other Authentication

Often, APIs accept credentials as header values (e.g., Bearer tokens) or query parameters. Your request method can
handle these types of authentication by simply accepting the user’s credentials as an argument:

3.3. Authentication 13

http://docs.python-requests.org/en/master/api/#requests.Timeout


Uplink Documentation, Release 0.6.1

@post("/user")
def update_user(self, access_token: Query, **info: Body):

"""Update the user associated to the given access token."""

If several request methods require authentication, you can persist the token through the consumer’s session prop-
erty:

class GitHub(Consumer):

def __init__(self, access_token):
self.session.params["access_token"] = access_token
...

3.3.3 Using Auth Support for Requests and aiohttp

As we work towards Uplink’s v1.0 release, improving built-in support for other types of authentication is a continuing
goal.

With that said, if Uplink currently doesn’t offer a solution for you authentication needs, you can always leverage the
available auth support for the underlying HTTP client.

For instance, requests offers out-of-the-box support for making requests with HTTP Digest Authentication, which
you can leverage like so:

from requests.auth import HTTPDigestAuth

client = uplink.RequestsClient(cred=HTTPDigestAuth("user", "pass"))
api = MyApi(BASE_URL, client=client)

You can also use other third-party libraries that extend auth support for the underlying client. For instance, you can
use requests-oauthlib for doing OAuth with Requests:

from requests_oauthlib import OAuth2Session

session = OAuth2Session(...)
api = MyApi(BASE_URL, client=session)

3.4 Serialization

Various serialization formats exist for transmitting structured data over the network: JSON is a popular choice amongst
many public APIs partly because its human readable, while a more compact format, such as Protocol Buffers, may be
more appropriate for a private API used within an organization.

Regardless what serialization format your API uses, Uplink – with a little bit of help – can automatically decode
responses and encode request bodies to and from Python objects using the selected format. This neatly abstracts the
HTTP layer from your API client, so callers can operate on objects that make sense to your model instead of directly
dealing with the underlying protocol.

This document walks you through how to leverage Uplink’s serialization support, including integrations for third-
party serialization libraries like marshmallow and tools for writing custom conversion strategies that fit your unique
needs.

14 Chapter 3. User Manual

http://docs.python-requests.org/en/master/api/#module-requests
https://github.com/requests/requests-oauthlib
https://developers.google.com/protocol-buffers/
https://marshmallow.readthedocs.io/en/latest/quickstart.html#module-marshmallow


Uplink Documentation, Release 0.6.1

3.4.1 Using Marshmallow Schemas

marshmallow is a framework-agnostic, object serialization library for Python. Uplink comes with built-in support
for Marshmallow; you can integrate your Marshmallow schemas with Uplink for easy JSON (de)serialization.

First, create a marshmallow.Schema, declaring any necessary conversions and validations. Here’s a simple ex-
ample:

import marshmallow

class RepoSchema(marshmallow.Schema):
full_name = marshmallow.fields.Str()

@marshmallow.post_load
def make_repo(self, data):

owner, repo_name = data["full_name"].split("/")
return Repo(owner=owner, name=repo_name)

Then, specify the schema using the uplink.returns decorator:

class GitHub(Consumer):
@returns(RepoSchema(many=True))
@get("users/{username}/repos")
def get_repos(self, username):

"""Get the user's public repositories."""

Python 3 users can use a return type hint instead:

class GitHub(Consumer):
@get("users/{username}/repos")
def get_repos(self, username) -> RepoSchema(many=True)

"""Get the user's public repositories."""

Your consumer should now return Python objects based on your Marshmallow schema:

github = GitHub(base_url="https://api.github.com")
print(github.get_repos("octocat"))
# Output: [Repo(owner="octocat", name="linguist"), ...]

For a more complete example of Uplink’s marshmallow support, check out this example on GitHub.

3.4.2 Custom JSON Deserialization

Recognizing JSON’s popularity amongst public APIs, Uplink provides some out-of-the-box utilities to adding JSON
serialization support for your objects simple.

For one, returns.json is handy when working with APIs that provide JSON responses. As its leading positional
argument, the decorator accepts a class that represents the expected schema of JSON body:

class GitHub(Consumer):
@returns.json(User)
@get("users/{username}")
def get_user(self, username): pass

Python 3 users can alternatively use a return type hint:

3.4. Serialization 15

https://marshmallow.readthedocs.io/en/latest/quickstart.html#module-marshmallow
https://marshmallow.readthedocs.io/en/latest/api_reference.html#marshmallow.Schema
https://marshmallow.readthedocs.io/en/latest/quickstart.html#module-marshmallow
https://github.com/prkumar/uplink/tree/master/examples/marshmallow


Uplink Documentation, Release 0.6.1

class GitHub(Consumer):
@returns.json
@get("users/{username}")
def get_user(self, username) -> User: pass

Next, if your objects (e.g., User) are not defined using a library for whom Uplink has built-in support (such as
marshmallow), you will also need to register a strategy that tells Uplink how to convert the HTTP response into
your expected return type.

To this end, we can use uplink.loads.from_json():

from uplink import loads

@loads.from_json(User)
def user_loader(user_cls, json):

return user_cls(json["id"], json["username"])

The decorated function, user_loader(), can then be passed into the converter constructor parameter when
instantiating a uplink.Consumer subclass:

my_client = MyConsumer(base_url=..., converter=user_loader)

Alternatively, you can add the uplink.install() decorator to register the converter function as a default con-
verter, meaning the converter will be included automatically with any consumer instance and doesn’t need to be
explicitly provided through the converter parameter:

from uplink import loads, install

@install
@loads.from_json(User)
def user_loader(user_cls, json):

return user_cls(json["id"], json["username"])

3.4.3 Converting Collections

Data-driven web applications, such as social networks and forums, devise a lot of functionality around large queries
on related data. Their APIs normally encode the results of these queries as collections of a common type. Examples
include a curated feed of posts from subscribed accounts, the top restaurants in your area, upcoming tasks* on a
checklist, etc.

You can use the other strategies in this section to add serialization support for a specific type, such as a post or
a restaurant. Once added, this support automatically extends to collections of that type, such as sequences and
mappings.

For example, consider a hypothetical Task Management API that supports adding tasks to one or more user-created
checklists. Here’s the JSON array that the API returns when we query pending tasks on a checklist titled “home”:

[
{

"id": 4139
"name": "Groceries"
"due_date": "Monday, September 3, 2018 10:00:00 AM PST"

},
{

"id": 4140
"title": "Laundry"

(continues on next page)

16 Chapter 3. User Manual

https://marshmallow.readthedocs.io/en/latest/quickstart.html#module-marshmallow


Uplink Documentation, Release 0.6.1

(continued from previous page)

"due_date": "Monday, September 3, 2018 2:00:00 PM PST"
}

]

In this example, the common type could be modeled in Python as a namedtuple, which we’ll name Task:

Task = collections.namedtuple("Task", ["id", "name", "due_date"])

Next, to add JSON deserialization support for this type, we could register a custom converter with loads.
from_json, which is a strategy covered in the subsection Custom JSON Deserialization. For the sake of brevity, I’ll
omit the implementation here, but you can follow the link above for details.

Notably, Uplink lets us leverage the added support to also handle collections of type Task. The uplink.types
module exposes two collection types, List and Dict, to be used as function return type annotations. In our example,
the query for pending tasks returns a list:

from uplink import Consumer, returns, get, types

class TaskApi(Consumer):
@returns.json
@get("tasks/{checklist}?due=today")
def get_pending_tasks(self, checklist) -> types.List[Task]

If you are a Python 3.5+ user that is already leveraging the typing module to support type hints as specified by
PEP 484 and PEP 526, you can safely use typing.List and typing.Dict here instead of the annotations from
uplink.types:

import typing
from uplink import Consumer, returns, get

class TaskApi(Consumer):
@returns.json
@get("tasks/{checklist}?due=today")
def get_pending_tasks(self, checklist) -> typing.List[Task]

Now, the consumer can handle these queries with ease:

>>> task_api.get_pending_tasks("home")
[Task(id=4139, name='Groceries', due_date='Monday, September 3, 2018 10:00:00 AM PST
→˓'),
Task(id=4140, name='Laundry', due_date='Monday, September 3, 2018 2:00:00 PM PST')]

Note that this feature works with any serialization format, not just JSON.

3.4.4 Writing A Custom Converter

Extending Uplink’s support for other serialization formats or libraries (e.g., XML, Thrift, Avro) is pretty straightfor-
ward.

When adding support for a new serialization library, create a subclass of converters.Factory, which defines
abstract methods for different serialization scenarios (deserializing the response body, serializing the request body,
etc.), and override each relevant method to return a callable that handles the method’s corresponding scenario.

For example, a factory that adds support for Python’s pickle protocol could look like:

3.4. Serialization 17

https://docs.python.org/3/library/typing.html#module-typing
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/pickle.html#module-pickle


Uplink Documentation, Release 0.6.1

import pickle

from uplink import converters

class PickleFactory(converters.Factory):
"""Adapter for Python's Pickle protocol."""

def create_response_body_converter(self, cls, request_definition):
# Return callable to deserialize response body into Python object.
return lambda response: pickle.loads(response.content)

def create_request_body_converter(self, cls, request_definition):
# Return callable to serialize Python object into bytes.
return pickle.dumps

Then, when instantiating a new consumer, you can supply this implementation through the converter constructor
argument of any Consumer subclass:

client = MyApiClient(BASE_URL, converter=PickleFactory())

If the added support should apply broadly, you can alternatively decorate your converters.Factory subclass
with the uplink.install() decorator, which ensures that Uplink automatically adds the factory to new instances
of any Consumer subclass. This way you don’t have to explicitly supply the factory each time you instantiate a
consumer.

from uplink import converters, install

@install
class PickleFactory(converters.Factory):

...

For a concrete example of extending support for a new serialization format or library with this approach, checkout this
Protobuf extension for Uplink.

3.5 Clients

To use a common English metaphor: Uplink stands on the shoulders of giants.

Uplink doesn’t implement any code to handle HTTP protocol stuff directly; for that, the library delegates to an ac-
tual HTTP client, such as Requests or Aiohttp. Whatever backing client you choose, when a request method on
a Consumer subclass is invoked, Uplink ultimately interacts with the backing library’s interface, at minimum to
submit requests and read responses.

This section covers the interaction between Uplink and the backing HTTP client library of your choosing, including
how to specify your selection.

3.5.1 Swapping Out the Default HTTP Session

By default, Uplink sends requests using the Requests library. You can configure the backing HTTP client object using
the client parameter of the Consumer constructor:

github = GitHub(BASE_URL, client=...)

For example, you can use the client parameter to pass in your own Requests session object:

18 Chapter 3. User Manual

https://github.com/prkumar/uplink-protobuf/blob/master/uplink_protobuf/converter.py
https://github.com/prkumar/uplink-protobuf/blob/master/uplink_protobuf/converter.py
http://docs.python-requests.org/en/master/user/advanced/#session-objects


Uplink Documentation, Release 0.6.1

session = requests.Session()
session.verify = False
github = GitHub(BASE_URL, client=session)

Further, this also applies for session objects from other HTTP client libraries that Uplink supports, such as aiohttp
(i.e., a custom ClientSession works here, as well).

Following the above example, the client parameter also accepts an instance of any requests.Session sub-
class. This makes it easy to leverage functionality from third-party Requests extensions, such as requests-oauthlib,
with minimal integration overhead:

from requests_oauthlib import OAuth2Session

session = OAuth2Session(...)
api = MyApi(BASE_URL, client=session)

3.5.2 Synchronous vs. Asynchronous

Notably, Requests blocks while waiting for a response from the server. For non-blocking requests, Uplink comes with
built-in (but optional) support for aiohttp and twisted.

For instance, you can provide the AiohttpClient when constructing a Consumer instance:

from uplink import AiohttpClient

github = GitHub(BASE_URL, client=AiohttpClient())

Checkout this example on GitHub for more.

3.6 Tips & Tricks

Here are a few ways to simplify consumer definitions.

3.6.1 Decorating All Request Methods in a Class

To apply a decorator of this library across all methods of a uplink.Consumer subclass, you can simply decorate
the class rather than each method individually:

@uplink.timeout(60)
class GitHub(uplink.Consumer):

@uplink.get("/repositories")
def get_repos(self):

"""Dump every public repository."""

@uplink.get("/organizations")
def get_organizations(self):

"""List all organizations."""

Hence, the consumer defined above is equivalent to the following, slightly more verbose definition:

3.6. Tips & Tricks 19

https://aiohttp.readthedocs.io/en/stable/structures.html#module-aiohttp
https://aiohttp.readthedocs.io/en/stable/client_reference.html#aiohttp.ClientSession
http://docs.python-requests.org/en/master/api/#requests.Session
https://github.com/requests/requests-oauthlib
https://aiohttp.readthedocs.io/en/stable/structures.html#module-aiohttp
https://twistedmatrix.com/documents/current/api/twisted.html
https://github.com/prkumar/uplink/tree/master/examples/async-requests


Uplink Documentation, Release 0.6.1

class GitHub(uplink.Consumer):
@uplink.timeout(60)
@uplink.get("/repositories")
def get_repos(self):

"""Dump every public repository."""

@uplink.timeout(60)
@uplink.get("/organizations")
def get_organizations(self):

"""List all organizations."""

3.6.2 Adopting the Argument’s Name

Several function argument annotations accept a name parameter on construction. For instance, the Path annotation
uses the name parameter to associate the function argument to a URI path parameter:

class GitHub(uplink.Consumer):
@uplink.get("users/{username}")
def get_user(self, username: uplink.Path("username")): pass

For such annotations, you can omit the name parameter to have the annotation adopt the name of its corresponding
method argument.

For instance, from the previous example, we can omit naming the Path annotation since the corresponding argument’s
name, username, matches the intended URI path parameter.

class GitHub(uplink.Consumer):
@uplink.get("users/{username}")
def get_user(self, username: uplink.Path): pass

Some annotations that support this behavior include: Path, uplink.Field, Part Header, and uplink.
Query .

3.6.3 Annotating Your Arguments For Python 2.7

There are several ways to annotate arguments. Most examples in this documentation use function annotations, but this
approach is unavailable for Python 2.7 users. Instead, you should either utilize the method annotation args or use the
optional args parameter of the HTTP method decorators (e.g., uplink.get).

Using uplink.args

One approach for Python 2.7 users involves using the method annotation args, arranging annotations in the same
order as their corresponding function arguments (again, ignore self):

class GitHub(uplink.Consumer):
@uplink.args(uplink.Url, uplink.Path)
@uplink.get
def get_commit(self, commits_url, sha): pass

The args argument

New in version v0.5.0.

20 Chapter 3. User Manual



Uplink Documentation, Release 0.6.1

The HTTP method decorators (e.g., uplink.get) support an optional positional argument args, which accepts a
list of annotations, arranged in the same order as their corresponding function arguments,

class GitHub(uplink.Consumer):
@uplink.get(args=(uplink.Url, uplink.Path))
def get_commit(self, commits_url, sha): pass

or a mapping of argument names to annotations:

class GitHub(uplink.Consumer):
@uplink.get(args={"commits_url": uplink.Url, "sha": uplink.Path})
def get_commit(self, commits_url, sha): pass

Function Annotations (Python 3 only)

When using Python 3, you can use these classes as function annotations (PEP 3107):

class GitHub(uplink.Consumer):
@uplink.get
def get_commit(self, commit_url: uplink.Url, sha: uplink.Path):

pass

3.6. Tips & Tricks 21

https://www.python.org/dev/peps/pep-3107


Uplink Documentation, Release 0.6.1

22 Chapter 3. User Manual



CHAPTER 4

API Reference

This guide details the classes and methods in Uplink’s public API.

4.1 API

This guide details the classes and methods in Uplink’s public API.

4.1.1 The Base Consumer Class

Consumer

class uplink.Consumer(base_url=”, client=None, converters=(), auth=None, hooks=(), **kwargs)
Base consumer class with which to define custom consumers.

Example usage:

from uplink import Consumer, get

class GitHub(Consumer):

@get("/users/{user}")
def get_user(self, user):

pass

client = GitHub("https://api.github.com/")
client.get_user("prkumar").json() # {'login': 'prkumar', ... }

Parameters

• base_url (str, optional) – The base URL for any request sent from this consumer in-
stance.

23

https://docs.python.org/3/library/stdtypes.html#str


Uplink Documentation, Release 0.6.1

• client (optional) – A supported HTTP client instance (e.g., a requests.
Session) or an adapter (e.g., RequestsClient).

• converters (ConverterFactory, optional) – One or more objects that encapsulate
custom (de)serialization strategies for request properties and/or the response body. (E.g.,
MarshmallowConverter)

• auth (tuple or callable, optional) – The authentication object for this consumer in-
stance.

• hooks (TransactionHook, optional) – One or more hooks to modify behavior of re-
quest execution and response handling (see response_handler or error_handler).

session
The Session object for this consumer instance.

Exposes the configuration of this Consumer instance and allows the persistence of certain properties
across all requests sent from that instance.

Example usage:

import uplink

class MyConsumer(uplink.Consumer):
def __init__(self, language):

# Set this header for all requests of the instance.
self.session.headers["Accept-Language"] = language
...

Returns Session

Session

class uplink.session.Session
The session of a Consumer instance.

Exposes the configuration of a Consumer instance and allows the persistence of certain properties across all
requests sent from that instance.

auth
The authentication object for this consumer instance.

base_url
The base URL for any requests sent from this consumer instance.

headers
A dictionary of headers to be sent on each request from this consumer instance.

inject(hook, *more_hooks)
Add hooks (e.g., functions decorated with either response_handler or error_handler) to the
session.

params
A dictionary of querystring data to attach to each request from this consumer instance.

24 Chapter 4. API Reference

http://docs.python-requests.org/en/master/api/#requests.Session
http://docs.python-requests.org/en/master/api/#requests.Session
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#callable


Uplink Documentation, Release 0.6.1

4.1.2 Decorators

The method decorators detailed in this section describe request properties that are relevant to all invocations of a
consumer method.

headers

class uplink.headers(arg, **kwargs)
A decorator that adds static headers for API calls.

@headers({"User-Agent": "Uplink-Sample-App"})
@get("/user")
def get_user(self):

"""Get the current user"""

When used as a class decorator, headers applies to all consumer methods bound to the class:

@headers({"Accept": "application/vnd.github.v3.full+json"})
class GitHub(Consumer):

...

headers takes the same arguments as dict.

Parameters

• arg – A dict containing header values.

• **kwargs – More header values.

params

class uplink.params(arg, **kwargs)
A decorator that adds static query parameters for API calls.

@params({"sort": "created"})
@get("/user")
def get_user(self):

"""Get the current user"""

When used as a class decorator, params applies to all consumer methods bound to the class:

@params({"client_id": "my-app-client-id"})
class GitHub(Consumer):

...

params takes the same arguments as dict.

Parameters

• arg – A dict containing query parameters.

• **kwargs – More query parameters.

json

class uplink.json
Use as a decorator to make JSON requests.

4.1. API 25

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict


Uplink Documentation, Release 0.6.1

You can annotate a method argument with uplink.Body , which indicates that the argument’s value should
become the request’s body. uplink.Body has to be either a dict or a subclass of py:class:collections.Mapping.

Example

@json
@patch(/user")
def update_user(self, **info: Body):

"""Update the current user."""

You can alternatively use the uplink.Field annotation to specify JSON fields separately, across multiple
arguments:

Example

@json
@patch(/user")
def update_user(self, name: Field, email: Field("e-mail")):

"""Update the current user."""

Further, to set a nested field, you can specify the path of the target field with a tuple of strings as the first
argument of uplink.Field.

Example

Consider a consumer method that sends a PATCH request with a JSON body of the following format:

{
user: {

name: "<User's Name>"
},

}

The tuple ("user", "name") specifies the path to the highlighted inner field:

@json
@patch(/user")
def update_user(

self,
new_name: Field(("user", "name"))

):
"""Update the current user."""

form_url_encoded

class uplink.form_url_encoded
URL-encodes the request body.

Used on POST/PUT/PATCH request. It url-encodes the body of the message and sets the appropriate
Content-Type header. Further, each field argument should be annotated with uplink.Field.

26 Chapter 4. API Reference



Uplink Documentation, Release 0.6.1

Example

@form_url_encoded
@post("/users/edit")
def update_user(self, first_name: Field, last_name: Field):

"""Update the current user."""

multipart

class uplink.multipart
Sends multipart form data.

Multipart requests are commonly used to upload files to a server. Further, annotate each part argument with
Part.

Example

@multipart
@put(/user/photo")
def update_user(self, photo: Part, description: Part):

"""Upload a user profile photo."""

timeout

class uplink.timeout(seconds)
Time to wait for a server response before giving up.

When used on other decorators it specifies how long (in secs) a decorator should wait before giving up.

Example

@timeout(60)
@get("/user/posts")
def get_posts(self):

"""Fetch all posts for the current users."""

When used as a class decorator, timeout applies to all consumer methods bound to the class.

Parameters seconds (int) – An integer used to indicate how long should the request wait.

args

class uplink.args(*annotations, **more_annotations)
Annotate method arguments for Python 2.7 compatibility.

Arrange annotations in the same order as their corresponding function arguments.

4.1. API 27

https://docs.python.org/3/library/functions.html#int


Uplink Documentation, Release 0.6.1

Example

@args(Path, Query)
@get("/users/{username})
def get_user(self, username, visibility):

"""Get a specific user."""

Use keyword args to target specific method parameters.

Example

@args(visibility=Query)
@get("/users/{username})
def get_user(self, username, visibility):

"""Get a specific user."""

Parameters

• *annotations – Any number of annotations.

• **more_annotations – More annotations, targeting specific method arguments.

response_handler

class uplink.response_handler(func)
A decorator for creating custom response handlers.

To register a function as a custom response handler, decorate the function with this class. The decorated function
should accept a single positional argument, an HTTP response object:

Example

@response_handler
def raise_for_status(response):

response.raise_for_status()
return response

Then, to apply custom response handling to a request method, simply decorate the method with the registered
response handler:

Example

@raise_for_status
@get("/user/posts")
def get_posts(self):

"""Fetch all posts for the current users."""

To apply custom response handling on all request methods of a uplink.Consumer subclass, simply decorate
the class with the registered response handler:

28 Chapter 4. API Reference



Uplink Documentation, Release 0.6.1

Example

@raise_for_status
class GitHub(Consumer):

...

New in version 0.4.0.

error_handler

class uplink.error_handler(func)
A decorator for creating custom error handlers.

To register a function as a custom error handler, decorate the function with this class. The decorated function
should accept three positional arguments: (1) the type of the exception, (2) the exception instance raised, and
(3) a traceback instance.

Example

@error_handler
def raise_api_error(exc_type, exc_val, exc_tb):

# wrap client error with custom API error
...

Then, to apply custom error handling to a request method, simply decorate the method with the registered error
handler:

Example

@raise_api_error
@get("/user/posts")
def get_posts(self):

"""Fetch all posts for the current users."""

To apply custom error handling on all request methods of a uplink.Consumer subclass, simply decorate the
class with the registered error handler:

Example

@raise_api_error
class GitHub(Consumer):

...

New in version 0.4.0.

Note: Error handlers can not completely suppress exceptions. The original exception is thrown if the error
handler doesn’t throw anything.

4.1. API 29



Uplink Documentation, Release 0.6.1

inject

class uplink.inject(*hooks)
A decorator that applies one or more hooks to a request method.

New in version 0.4.0.

returns.*

Converting an HTTP response body into a custom Python object is straightforward with Uplink; the uplink.
returns modules exposes optional decorators for defining the expected return type and data serialization format
for any consumer method.

class uplink.returns.json(model=None, member=())
Specifies that the decorated consumer method should return a JSON object.

# This method will return a JSON object (e.g., a dict or list)
@returns.json
@get("/users/{username}")
def get_user(self, username):

"""Get a specific user."""

Returning a Specific JSON Field:

The member argument accepts a string or tuple that specifies the path of an internal field in the JSON
document.

For instance, consider an API that returns JSON responses that, at the root of the document, contains
both the server-retrieved data and a list of relevant API errors:

{
"data": { "user": "prkumar", "id": 140232 },
"errors": []

}

If returning the list of errors is unnecessary, we can use the member argument to strictly return the
inner field data:

@returns.json(member="data")
@get("/users/{username}")
def get_user(self, username):

"""Get a specific user."""

New in version v0.5.0.

uplink.returns.from_json
alias of json

class uplink.returns.model(type)
Specifies that the function returns a specific class.

In Python 3, to provide a consumer method’s return type, you can set it as the method’s return annotation:

@get("/users/{username}")
def get_user(self, username) -> UserSchema:

"""Get a specific user."""

For Python 2.7 compatibility, you can use this decorator instead:

30 Chapter 4. API Reference



Uplink Documentation, Release 0.6.1

@returns.model(UserSchema)
@get("/users/{username}")
def get_user(self, username):

"""Get a specific user."""

To have Uplink convert response bodies into the desired type, you will need to define an appropriate converter
(e.g., using uplink.loads).

New in version v0.5.1.

4.1.3 Function Annotations

For programming in general, function parameters drive a function’s dynamic behavior; a function’s output depends
normally on its inputs. With uplink, function arguments parametrize an HTTP request, and you indicate the dynamic
parts of the request by appropriately annotating those arguments with the classes detailed in this section.

Path

class uplink.Path(name=None, type=None)
Substitution of a path variable in a URI template.

URI template parameters are enclosed in braces (e.g., {name}). To map an argument to a declared URI param-
eter, use the Path annotation:

class TodoService(object):
@get("/todos{/id}")
def get_todo(self, todo_id: Path("id")): pass

Then, invoking get_todo with a consumer instance:

todo_service.get_todo(100)

creates an HTTP request with a URL ending in /todos/100.

Note: Any unannotated function argument that shares a name with a URL path parameter is implicitly annotated
with this class at runtime.

For example, we could simplify the method from the previous example by matching the path variable and
method argument names:

@get("/todos{/id}")
def get_todo(self, id): pass

Query

class uplink.Query(name=None, encoded=False, type=None)
Set a dynamic query parameter.

This annotation turns argument values into URL query parameters. You can include it as function argument
annotation, in the format: <query argument>: uplink.Query.

If the API endpoint you are trying to query uses q as a query parameter, you can add q: uplink.Query to
the consumer method to set the q search term at runtime.

4.1. API 31

https://tools.ietf.org/html/rfc6570


Uplink Documentation, Release 0.6.1

Example

@get("/search/commits")
def search(self, search_term: Query("q")):

'''Search all commits with the given search term.'''

To specify whether or not the query parameter is already URL encoded, use the optional encoded argument:

@get("/search/commits")
def search(self, search_term: Query("q", encoded=True)):

"""Search all commits with the given search term."""

Parameters encoded (bool, optional) – Specifies whether the parameter name and value are
already URL encoded.

QueryMap

class uplink.QueryMap(encoded=False, type=None)
A mapping of query arguments.

If the API you are using accepts multiple query arguments, you can include them all in your function method
by using the format: <query argument>: uplink.QueryMap

Example

@get("/search/users")
def search(self, **params: QueryMap):

"""Search all users."""

Parameters encoded (bool, optional) – Specifies whether the parameter name and value are
already URL encoded.

Header

class uplink.Header(name=None, type=None)
Pass a header as a method argument at runtime.

While uplink.headers attaches static headers that define all requests sent from a consumer method, this
class turns a method argument into a dynamic header value.

Example

@get("/user")
def (self, session_id: Header("Authorization")):

"""Get the authenticated user"""

HeaderMap

class uplink.HeaderMap(type=None)
Pass a mapping of header fields at runtime.

32 Chapter 4. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool


Uplink Documentation, Release 0.6.1

Field

class uplink.Field(name=None, type=None)
Defines a form field to the request body.

Use together with the decorator uplink.form_url_encoded and annotate each argument accepting a form
field with uplink.Field.

Example::

@form_url_encoded
@post("/users/edit")
def update_user(self, first_name: Field, last_name: Field):

"""Update the current user."""

FieldMap

class uplink.FieldMap(type=None)
Defines a mapping of form fields to the request body.

Use together with the decorator uplink.form_url_encoded and annotate each argument accepting a form
field with uplink.FieldMap.

Example

@form_url_encoded
@post("/user/edit")
def create_post(self, **user_info: FieldMap):

"""Update the current user."""

Part

class uplink.Part(name=None, type=None)
Marks an argument as a form part.

Use together with the decorator uplink.multipart and annotate each form part with uplink.Part.

Example

@multipart
@put(/user/photo")
def update_user(self, photo: Part, description: Part):

"""Upload a user profile photo."""

PartMap

class uplink.PartMap(type=None)
A mapping of form field parts.

Use together with the decorator uplink.multipart and annotate each part of form parts with uplink.
PartMap

4.1. API 33



Uplink Documentation, Release 0.6.1

Example

@multipart
@put(/user/photo")
def update_user(self, photo: Part, description: Part):

"""Upload a user profile photo."""

Body

class uplink.Body(type=None)
Set the request body at runtime.

Use together with the decorator uplink.json. The method argument value will become the request’s body
when annotated with uplink.Body .

Example

@json
@patch(/user")
def update_user(self, **info: Body):

"""Update the current user."""

Url

class uplink.Url
Sets a dynamic URL.

Provides the URL at runtime as a method argument. Drop the decorator parameter path from uplink.get
and annotate the corresponding argument with uplink.Url

Example

@get
def get(self, endpoint: Url):

"""Execute a GET requests against the given endpoint"""

4.1.4 HTTP Clients

The client parameter of the Consumer constructor offers a way to swap out Requests with another HTTP client,
including those listed here:

github = GitHub(BASE_URL, client=...)

Requests

class uplink.RequestsClient(session=None, **kwargs)
A requests client that returns requests.Response responses.

34 Chapter 4. API Reference

http://docs.python-requests.org/en/master/api/#module-requests
http://docs.python-requests.org/en/master/api/#requests.Response


Uplink Documentation, Release 0.6.1

Parameters session (requests.Session, optional) – The session that should handle sending
requests. If this argument is omitted or set to None, a new session will be created.

Aiohttp

class uplink.AiohttpClient(session=None, **kwargs)
An aiohttp client that creates awaitable responses.

Note: This client is an optional feature and requires the aiohttp package. For example, here’s how to install
this extra using pip:

$ pip install uplink[aiohttp]

Parameters session (aiohttp.ClientSession, optional) – The session that should handle
sending requests. If this argument is omitted or set to None, a new session will be created.

Twisted

class uplink.TwistedClient(session=None)
Client that returns twisted.internet.defer.Deferred responses.

Note: This client is an optional feature and requires the twisted package. For example, here’s how to install
this extra using pip:

$ pip install uplink[twisted]

Parameters session (requests.Session, optional) – The session that should handle sending
requests. If this argument is omitted or set to None, a new session will be created.

4.1.5 Converters

The converter parameter of the uplink.Consumer constructor accepts a custom adapter class that handles
serialization of HTTP request properties and deserialization of HTTP response objects:

github = GitHub(BASE_URL, converter=...)

Starting with version v0.5, some out-of-the-box converters are included automatically and don’t need to be explicitly
provided through the converter parameter. These implementations are detailed below.

Marshmallow

Uplink comes with optional support for marshmallow.

class uplink.converters.MarshmallowConverter
A converter that serializes and deserializes values using marshmallow schemas.

To deserialize JSON responses into Python objects with this converter, define a marshmallow.Schema
subclass and set it as the return annotation of a consumer method:

4.1. API 35

http://docs.python-requests.org/en/master/api/#requests.Session
https://docs.python.org/3/library/constants.html#None
https://aiohttp.readthedocs.io/en/stable/structures.html#module-aiohttp
https://aiohttp.readthedocs.io/en/stable/structures.html#module-aiohttp
https://aiohttp.readthedocs.io/en/stable/client_reference.html#aiohttp.ClientSession
https://docs.python.org/3/library/constants.html#None
https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html
https://twistedmatrix.com/documents/current/api/twisted.html
http://docs.python-requests.org/en/master/api/#requests.Session
https://docs.python.org/3/library/constants.html#None
https://marshmallow.readthedocs.io/en/latest/quickstart.html#module-marshmallow
https://marshmallow.readthedocs.io/en/latest/quickstart.html#module-marshmallow
https://marshmallow.readthedocs.io/en/latest/api_reference.html#marshmallow.Schema


Uplink Documentation, Release 0.6.1

@get("/users")
def get_users(self, username) -> UserSchema():

'''Fetch a single user'''

Note: This converter is an optional feature and requires the marshmallow package. For example, here’s how
to install this feature using pip:

$ pip install uplink[marshmallow]

Note: Starting with version v0.5, this converter factory is automatically included if you have marshmallow in-
stalled, so you don’t need to provide it when constructing your consumer instances.

Converting Collections

New in version v0.5.0.

Uplink can convert collections of a type, such as deserializing a response body into a list of users. If you have
typing installed (the module is part of the standard library starting Python 3.5), you can use type hints (see PEP
484) to specify such conversions. You can also leverage this feature without typing by using one of the proxy types
defined in uplink.types.

The following converter factory implements this feature and is automatically included, so you don’t need to provide it
when constructing your consumer instance:

class uplink.converters.TypingConverter
An adapter that serializes and deserializes collection types from the typing module, such as typing.List.

Inner types of a collection are recursively resolved, using other available converters if necessary. For in-
stance, when resolving the type hint typing.Sequence[UserSchema], where UserSchema is a custom
marshmallow.Schema subclass, the converter will resolve the inner type using uplink.converters.
MarshmallowConverter.

@get("/users")
def get_users(self) -> typing.Sequence[UserSchema]:

'''Fetch all users.'''

Note: The typing module is available in the standard library starting from Python 3.5. For earlier versions
of Python, there is a port of the module available on PyPI.

However, you can utilize this converter without the typing module by using one of the proxies defined by
uplink.returns (e.g., uplink.types.List).

Here are the collection types defined in uplink.types. You can use these or the corresponding type hints from
typing to leverage this feature:

uplink.types.List
list() -> new empty list list(iterable) -> new list initialized from iterable’s items A proxy for typing.List
that is safe to use in type hints with Python 3.4 and below.

36 Chapter 4. API Reference

https://marshmallow.readthedocs.io/en/latest/quickstart.html#module-marshmallow
https://marshmallow.readthedocs.io/en/latest/quickstart.html#module-marshmallow
https://docs.python.org/3/library/typing.html#module-typing
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
https://docs.python.org/3/library/typing.html#module-typing
https://docs.python.org/3/library/typing.html#module-typing
https://docs.python.org/3/library/typing.html#typing.List
https://marshmallow.readthedocs.io/en/latest/api_reference.html#marshmallow.Schema
https://docs.python.org/3/library/typing.html#module-typing
https://docs.python.org/3/library/typing.html#module-typing
https://docs.python.org/3/library/typing.html#typing.List


Uplink Documentation, Release 0.6.1

@returns.from_json
@get("/users")
def get_users(self) -> types.List[str]:

"""Fetches all users"""

uplink.types.Dict
dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object’s

(key, value) pairs

dict(iterable) -> new dictionary initialized as if via: d = {} for k, v in iterable:

d[k] = v

dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For
example: dict(one=1, two=2)

A proxy for typing.Dict that is safe to use in type hints with Python 3.4 and below.

@returns.from_json
@get("/users")
def get_users(self) -> types.Dict[str, str]:

"""Fetches all users"""

Writing a Custom Converter

You can define custom converters by using uplink.loads and uplink.dumps.

These classes can be used as decorators to create converters of a class and its subclasses:

# Registers the function as a loader for the given model class.
@loads.from_json(Model)
def load_model_from_json(model_type, json):

...

Note: Unlike consumer methods, these functions should be defined outside of a class scope.

To use the converter, provide the generated converter object when instantiating a Consumer subclass, through the
converter constructor parameter:

github = GitHub(BASE_URL, converter=load_model_from_json)

Alternatively, you can add the uplink.loads.install() or uplink.dumps.install() decorator to reg-
ister the converter function as a default converter, meaning the converter will be included automatically with any
consumer instance and doesn’t need to be explicitly provided through the :py:obj:converter parameter:

# Register the function as a default loader for the given model class.
@loads.install
@loads.from_json(Model)
def load_model_from_json(model_type, json):

...

class uplink.loads(base_class, annotations=())
Builds a custom object deserializer.

4.1. API 37

https://docs.python.org/3/library/typing.html#typing.Dict


Uplink Documentation, Release 0.6.1

This class takes a single argument, the base model class, and registers the decorated function as a deserializer
for that base class and all subclasses.

Further, the decorated function should accept two positional arguments: (1) the encountered type (which can be
the given base class or a subclass), and (2) the response data.

@loads(ModelBase)
def load_model(model_cls, data):

...

New in version v0.5.0.

classmethod from_json(base_class, annotations=())
Builds a custom JSON deserialization strategy.

This decorator accepts the same arguments and behaves like uplink.loads, except that the second
argument of the decorated function is a JSON object:

@loads.from_json(User)
def from_json(user_cls, json):

return user_cls(json["id"], json["username"])

Notably, only consumer methods that have the expected return type (i.e., the given base class or any
subclass) and are decorated with uplink.returns.from_json can leverage the registered strategy
to deserialize JSON responses.

For example, the following consumer method would leverage the from_json() strategy defined above:

@returns.from_json
@get("user")
def get_user(self) -> User: pass

New in version v0.5.0.

class uplink.dumps(base_class, annotations=())
Builds a custom object serializer.

This decorator takes a single argument, the base model class, and registers the decorated function as a serializer
for that base class and all subclasses.

Further, the decorated function should accept two positional arguments: (1) the encountered type (which can be
the given base class or a subclass), and (2) the encountered instance.

@dumps(ModelBase)
def deserialize_model(model_cls, model_instance):

...

New in version v0.5.0.

classmethod to_json(base_class, annotations=())
Builds a custom JSON serialization strategy.

This decorator accepts the same arguments and behaves like uplink.dumps. The only distinction is
that the decorated function should be JSON serializable.

@dumps.to_json(ModelBase)
def to_json(model_cls, model_instance):

return model_instance.to_json()

38 Chapter 4. API Reference



Uplink Documentation, Release 0.6.1

Notably, only consumer methods that are decorated with py:class:uplink.json and have one or more argu-
ment annotations with the expected type (i.e., the given base class or a subclass) can leverage the registered
strategy.

For example, the following consumer method would leverage the to_json() strategy defined above,
given User is a subclass of ModelBase:

@json
@post("user")
def change_user_name(self, name: Field(type=User): pass

New in version v0.5.0.

4.1. API 39



Uplink Documentation, Release 0.6.1

40 Chapter 4. API Reference



CHAPTER 5

Miscellaneous

5.1 Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to the Semantic Versioning scheme.

5.1.1 0.6.1 - 2018-9-14

Changed

• When the type parameter of a function argument annotation, such as Query or Body, is omitted, the type of
the annotated argument’s value is no longer used to determine how to convert the value before it’s passed to the
backing client; the argument’s value is converted only when its type is explicitly set.

5.1.2 0.6.0 - 2018-9-11

Added

• The session property to the Consumer base class, exposing the consumer instance’s configuration and
allowing for the persistence of certain properties across requests sent from that instance.

• The params decorator, which when applied to a method of a Consumer subclass, can add static query param-
eters to each API call.

• The converters.Factory base class for defining integrations with other serialization formats and libraries.

• The uplink.install decorator for registering extensions, such as a custom converters.Factory im-
plementation, to be applied broadly.

41

http://keepachangelog.com/en/1.0.0/
https://packaging.python.org/tutorials/distributing-packages/#semantic-versioning-preferred


Uplink Documentation, Release 0.6.1

Fixed

• Issue with detecting typing.List and typing.Dict for converting collections on Python 3.7.

• RuntimeWarning that “ClientSession.close was never awaited” when using aiohttp >= 3.0.

Changed

• When using the marshmallow integration, Uplink no longer suppresses Schema validation errors on deseri-
alization; users can now handle these exceptions directly.

5.1.3 0.5.5 - 2018-8-01

Fixed

• Issue with sending JSON list Body using @json annotation.

5.1.4 0.5.4 - 2018-6-26

Fixed

• When using uplink.AiohttpClient with aiohttp>=3.0, the underlying aiohttp.
ClientSession would remain open on program exit.

5.1.5 0.5.3 - 2018-5-31

Fixed

• Issue where adding two or more response handlers (i.e., functions decorated with uplink.
response_handler) to a method caused a TypeError.

5.1.6 0.5.2 - 2018-5-30

Fixed

• Applying returns.json decorator without arguments should produce JSON responses when the decorated
method is lacking a return value annotation.

5.1.7 0.5.1 - 2018-4-10

Added

• Decorator uplink.returns.model for specifying custom return type without indicating a specific data
deserialization format.

42 Chapter 5. Miscellaneous



Uplink Documentation, Release 0.6.1

Fixed

• Have uplink.Body decorator accept any type, not just mappings.

• Reintroduce the uplink.returns decorator.

5.1.8 0.5.0 - 2018-4-06

Added

• Decorators for convenient registration of custom serialization. (uplink.dumps) and deserialization
(uplink.loads) strategies.

• Support for setting nested JSON fields with uplink.Field and uplink.json.

• Optional args parameter to HTTP method decorators (e.g., uplink.get) for another Python 2.7-compatible
alternative to annotating consumer method arguments with function annotations.

• Decorator uplink.returns.json for converting HTTP response bodies into JSON objects or custom
Python objects.

• Support for converting collections (e.g., converting a response body into a list of users).

Changed

• Leveraging built-in converters (such as uplink.converters.MarshmallowConverter) no longer re-
quires providing the converter when instantiating an uplink.Consumer subclass, as these converters are
now implicitly included.

Fixed

• uplink.response_handler and uplink.error_handler properly adopts the name and docstring
of the wrapped function.

5.1.9 0.4.1 - 2018-3-10

Fixed

• Enforce method-level decorators override class-level decorators when they conflict.

5.1.10 0.4.0 - 2018-2-10

Added

• Support for Basic Authentication.

• The response_handler decorator for defining custom response handlers.

• The error_handler decorator for defining custom error handlers.

• The inject decorator for injecting other kinds of middleware.

• The Consumer._inject method for adding middleware to a consumer instance.

5.1. Changelog 43



Uplink Documentation, Release 0.6.1

• Support for annotating constructor arguments of a Consumer subclass with built-in function annotations like
Query and Header.

5.1.11 0.3.0 - 2018-1-09

Added

• HTTP HEAD request decorator by @brandonio21.

• Support for returning deserialized response objects using marshmallow schemas.

• Constructor parameter for Query and QueryMap to support already encoded URL parameters.

• Support for using requests.Session and aiohttp.ClientSession instances with the client pa-
rameter of the Consumer constructor.

Changed

• aiohttp and twisted are now optional dependencies/extras.

Fixed

• Fix for calling a request method with super, by @brandonio21.

• Fix issue where method decorators would incorrectly decorate inherited request methods.

5.1.12 0.2.2 - 2017-11-23

Fixed

• Fix for error raised when an object that is not a class is passed into the client parameter of the Consumer
constructor, by @kadrach.

5.1.13 0.2.0 - 2017-11-03

Added

• The class uplink.Consumer by @itstehkman. Consumer classes should inherit this base. class, and creating
consumer instances happens through instantiation.

• Support for asyncio for Python 3.4 and above.

• Support for twisted for all supported Python versions.

Changed

• BREAKING: Invoking a consumer method now builds and executes the request, removing the extra step of
calling the execute method.

44 Chapter 5. Miscellaneous

https://github.com/brandonio21
https://github.com/brandonio21
https://github.com/kadrach
https://github.com/itstehkman


Uplink Documentation, Release 0.6.1

Deprecated

• Building consumer instances with uplink.build. Instead, Consumer classes should inherit uplink.
Consumer.

Fixed

• Header link for version 0.1.1 in changelog.

5.1.14 0.1.1 - 2017-10-21

Added

• Contribution guide, CONTRIBUTING.rst.

• “Contributing” Section in README.rst that links to contribution guide.

• AUTHORS.rst file for listing project contributors.

• Adopt Contributor Covenant Code of Conduct.

Changed

• Replaced tentative contributing instructions in preview notice on documentation homepage with link to contri-
bution guide.

5.1.15 0.1.0 - 2017-10-19

Added

• Python ports for almost all method and argument annotations in Retrofit.

• Adherence to the variation of the semantic versioning scheme outlined in the official Python package distribution
tutorial.

• MIT License

• Documentation with introduction, instructions for installing, and quick getting started guide covering the builder
and all method and argument annotations.

• README that contains GitHub API v3 example, installation instructions with pip, and link to online docu-
mentation.

5.1. Changelog 45

https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
http://square.github.io/retrofit/


Uplink Documentation, Release 0.6.1

46 Chapter 5. Miscellaneous



Python Module Index

u
uplink.returns, 30

47



Uplink Documentation, Release 0.6.1

48 Python Module Index



Index

A
AiohttpClient (class in uplink), 35
args (class in uplink), 27
auth (uplink.session.Session attribute), 24

B
base_url (uplink.session.Session attribute), 24
Body (class in uplink), 34

C
Consumer (class in uplink), 23

D
Dict (in module uplink.types), 37
dumps (class in uplink), 38

E
error_handler (class in uplink), 29

F
Field (class in uplink), 33
FieldMap (class in uplink), 33
form_url_encoded (class in uplink), 26
from_json (in module uplink.returns), 30
from_json() (uplink.loads class method), 38

H
Header (class in uplink), 32
HeaderMap (class in uplink), 32
headers (class in uplink), 25
headers (uplink.session.Session attribute), 24

I
inject (class in uplink), 30
inject() (uplink.session.Session method), 24

J
json (class in uplink), 25

json (class in uplink.returns), 30

L
List (in module uplink.types), 36
loads (class in uplink), 37

M
MarshmallowConverter (class in uplink.converters), 35
model (class in uplink.returns), 30
multipart (class in uplink), 27

P
params (class in uplink), 25
params (uplink.session.Session attribute), 24
Part (class in uplink), 33
PartMap (class in uplink), 33
Path (class in uplink), 31
Python Enhancement Proposals

PEP 3107, 21
PEP 484, 17, 36
PEP 526, 17

Q
Query (class in uplink), 31
QueryMap (class in uplink), 32

R
RequestsClient (class in uplink), 34
response_handler (class in uplink), 28

S
Session (class in uplink.session), 24
session (uplink.Consumer attribute), 24

T
timeout (class in uplink), 27
to_json() (uplink.dumps class method), 38
TwistedClient (class in uplink), 35
TypingConverter (class in uplink.converters), 36

49



Uplink Documentation, Release 0.6.1

U
uplink.returns (module), 30
Url (class in uplink), 34

50 Index


	Features
	User Testimonials
	User Manual
	Installation
	Quickstart
	Authentication
	Serialization
	Clients
	Tips & Tricks

	API Reference
	API

	Miscellaneous
	Changelog

	Python Module Index

