

Uplink 📡

A Declarative HTTP Client for Python. Inspired by Retrofit [http://square.github.io/retrofit/].

[image: Release] [https://github.com/prkumar/uplink] [image: Python Version] [https://pypi.python.org/pypi/uplink] [image: License] [https://github.com/prkumar/uplink/blob/master/LICENSE] [image: Codecov] [https://codecov.io/gh/prkumar/uplink] [image: Join the chat at https://gitter.im/python-uplink/Lobby] [https://gitter.im/python-uplink/Lobby?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]

Note

Uplink is currently in initial development. Until the official
release (v1.0.0), the public API should be considered provisional.
Although we don’t expect any considerable changes to the API at this point,
please avoid using the code in production, for now.

However, while Uplink is under construction, we invite eager users to
install early and provide open feedback, which can be as simple as
opening a GitHub issue when you notice a missing feature, latent
defect, documentation oversight, etc.

Moreover, for those interested in contributing, checkout the Contribution
Guide on GitHub [https://github.com/prkumar/uplink/blob/master/CONTRIBUTING.rst]!

Uplink turns your HTTP API into a Python class.

from uplink import Consumer, get, headers, Path, Query

class GitHub(Consumer):

 @get("users/{user}/repos")
 def list_repos(self, user: Path, sort_by: Query("sort")):
 """Get user's public repositories."""

Build an instance to interact with the webservice.

github = GitHub(base_url="https://api.github.com/")

Then, executing an HTTP request is as simply as invoking a method.

repos = github.list_repos("octocat", sort_by="created")

The returned object is a friendly requests.Response [http://docs.python-requests.org/en/master/api/#requests.Response]:

print(repos.json())
Output: [{'id': 64778136, 'name': 'linguist', ...

For sending non-blocking requests, Uplink comes with support for
aiohttp [https://aiohttp.readthedocs.io/en/stable/structures.html#module-aiohttp] and twisted [https://twistedmatrix.com/documents/current/api/twisted.html] (example [https://github.com/prkumar/uplink/tree/master/examples/async-requests]).

Use decorators and function annotations to describe the HTTP request:

	URL parameter replacement and query parameter support

	Convert response bodies into Python objects (e.g., using
marshmallow [https://marshmallow.readthedocs.io/en/latest/quickstart.html#module-marshmallow] or a custom converter)

	JSON, URL-encoded, and multipart request body and file upload

	Inject functions as middleware to define custom response and error handling

The User Manual

Follow this guide to get up and running with Uplink.

	Installation
	Using pip

	Download the Source Code

	Extras

	Introduction
	Static Request Handling

	Dynamic Request Handling

	Quickstart
	Request Method

	URL Manipulation

	Request Body

	Form Encoded, Multipart, and JSON

	Header Manipulation

	Synchronous vs. Asynchronous

	Deserializing the Response Body

	Custom Response and Error Handling

	Annotating __init__() Arguments

	_inject() Request Properties

	Authentication
	Basic Authentication

	Other Authentication

	Using Auth Support for Requests and aiohttp

	Tips & Tricks
	Decorating All Request Methods in a Class

	Adopting the Argument’s Name

	Annotating Your Arguments For Python 2.7

The Public API

This guide details the classes and methods in Uplink’s public API.

	Decorators
	headers

	json

	form_url_encoded

	multipart

	timeout

	args

	response_handler

	error_handler

	inject

	returns.*

	Function Annotations
	Path

	Query

	QueryMap

	Header

	HeaderMap

	Field

	FieldMap

	Part

	PartMap

	Body

	Url

	HTTP Clients
	Requests

	Aiohttp

	Twisted

	Converters
	Marshmallow

	Converting Collections

	Writing a Custom Converter

	Changelog
	0.5.5 - 2018-8-01

	0.5.4 - 2018-6-26

	0.5.3 - 2018-5-31

	0.5.2 - 2018-5-30

	0.5.1 - 2018-4-10

	0.5.0 - 2018-4-06

	0.4.1 - 2018-3-10

	0.4.0 - 2018-2-10

	0.3.0 - 2018-1-09

	0.2.2 - 2017-11-23

	0.2.0 - 2017-11-03

	0.1.1 - 2017-10-21

	0.1.0 - 2017-10-19

Installation

Using pip

With pip (or pipenv), you can install Uplink simply by
typing:

$ pip install -U uplink

Download the Source Code

Uplink’s source code is in a public repository hosted on GitHub [https://github.com/prkumar/uplink].

As an alternative to installing with pip, you could clone the
repository,

$ git clone https://github.com/prkumar/uplink.git

then, install; e.g., with setup.py:

$ cd uplink
$ python setup.py install

Extras

These are optional integrations and features that extend the library’s core
functionality and typically require an additional dependency.

When installing Uplink with pip, you can specify any of the following
extras, to add their respective dependencies to your installation:

	Extra

	Description

	aiohttp

	Enables uplink.AiohttpClient,
for sending non-blocking requests [https://github.com/prkumar/uplink/tree/master/examples/async-requests]
and receiving awaitable responses.

	marshmallow

	Enables uplink.MarshmallowConverter,
for converting JSON responses directly into Python objects [https://github.com/prkumar/uplink/tree/master/examples/marshmallow]
using marshmallow.Schema [https://marshmallow.readthedocs.io/en/latest/api_reference.html#marshmallow.Schema].

	twisted

	Enables uplink.TwistedClient,
for sending non-blocking requests [https://github.com/prkumar/uplink/tree/master/examples/async-requests] and receiving
Deferred [https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html] responses.

To download all available features, run

$ pip install -U uplink[aiohttp, marshmallow, twisted]

Introduction

Uplink delivers reusable and self-sufficient objects for accessing HTTP
webservices, with minimal code and user pain. Simply define your consumers
using decorators and function annotations, and we’ll handle
the rest for you… pun intended, obviously 😎

Static Request Handling

Method decorators describe request properties that are relevant
to all invocations of a consumer method.

For instance, consider the following GitHub API consumer:

class GitHub(uplink.Consumer):
 @uplink.timeout(60)
 @uplink.get("/repositories")
 def get_repos(self):
 """Dump every public repository."""

Annotated with timeout, the method get_repos() will build
HTTP requests that wait an allotted number of seconds – 60, in this case –
for the server to respond before giving up.

As method annotations are simply decorators, you can stack one on top of another
for chaining:

class GitHub(uplink.Consumer):
 @uplink.headers({"Accept": "application/vnd.github.v3.full+json"})
 @uplink.timeout(60)
 @uplink.get("/repositories")
 def get_repos(self):
 """Dump every public repository."""

Dynamic Request Handling

For programming in general, function parameters drive a function’s
dynamic behavior; a function’s output depends normally on its inputs.
With uplink, function arguments parametrize an HTTP request,
and you indicate the dynamic parts of the request by appropriately
annotating those arguments.

To illustrate, for the method get_user() in the following
snippet, we have flagged the argument username as a URI
placeholder replacement using the Path annotation:

class GitHub(uplink.Consumer):
 @uplink.get("users/{username}")
 def get_user(self, username: uplink.Path("username")): pass

Invoking this method on a consumer instance, like so:

github.get_user(username="prkumar")

Builds an HTTP request that has a URL ending with users/prkumar.

Note

As you probably took away from the above example: when parsing the
method’s signature for argument annotations, uplink skips
the instance reference argument, which is the leading method
parameter and usually named self.

Quickstart

Decorators and function annotations indicate how a request will be handled.

Request Method

Uplink offers decorators that turn any method into a request definition. These
decorators provide the request method and relative URL of the intended
request: get, post,
put, patch and delete.

The relative URL of the resource is specified in the decorator.

@get("users/list")

You can also specify query parameters in the URL.

@get("users/list?sort=desc")

Moreover, request methods must be bound to a Consumer
subclass.

class MyApi(Consumer):
 @get("users/list")
 def list_users(self):
 """List all users."""

URL Manipulation

A request URL can be updated dynamically using URI template parameters [https://tools.ietf.org/html/rfc6570]. A simple URI parameter is an
alphanumeric string surrounded by { and }.

To match the parameter with a method argument, either match the argument’s
name with the alphanumeric string, like so

@get("group/{id}/users")
def group_list(self, id): pass

or use the Path annotation.

@get("group/{id}/users")
def group_list(self, group_id: Path("id")): pass

Query parameters can also be added.

@get("group/{id}/users")
def group_list(self, group_id: Path("id"), sort: Query): pass

For complex query parameter combinations, a mapping can be used:

@get("group/{id}/users")
def group_list(self, group_id: Path("id"), options: QueryMap): pass

Request Body

An argument’s value can be specified for use as an HTTP request body with the
Body annotation:

@post("users/new")
def create_user(self, user: Body): pass

This annotation works well with the keyword arguments parameter (denoted
by the ** prefix):

@post("users/new")
def create_user(self, **user_info: Body): pass

Form Encoded, Multipart, and JSON

Methods can also be declared to send form-encoded, multipart, and JSON data.

Form-encoded data is sent when form_url_encoded decorates
the method. Each key-value pair is annotated with a Field
annotation:

@form_url_encoded
@post("user/edit")
def update_user(self, first_name: Field, last_name: Field): pass

Multipart requests are used when multipart decorates the
method. Parts are declared using the Part annotation:

@multipart
@put("user/photo")
def update_user(self, photo: Part, description: Part): pass

JSON data is sent when json decorates the method. The
Body annotation declares the JSON payload:

@uplink.json
@uplink.patch("/user")
def update_user(self, **user_info: uplink.Body):
 """Update an authenticated user."""

Header Manipulation

You can set static headers for a method using the headers
decorator.

@headers({
 "Accept": "application/vnd.github.v3.full+json",
 "User-Agent": "Uplink-Sample-App"
})
@get("users/{username}")
def get_user(self, username): pass

headers can be used as a class decorator for headers that
need to be added to every request:

@headers({
 "Accept": "application/vnd.github.v3.full+json",
 "User-Agent": "Uplink-Sample-App"
})
class GitHub(Consumer):
 ...

A request header can be updated dynamically using the Header
function parameter annotation:

@get("user")
def get_user(self, authorization: Header):
 """Get an authenticated user."""

Synchronous vs. Asynchronous

By default, Uplink uses the Requests library to make requests. However, the
client parameter of the Consumer constructor offers a
way to swap out Requests with another HTTP client:

github = GitHub(BASE_URL, client=...)

Notably, Requests blocks while waiting for a response from a server.
For non-blocking requests, Uplink comes with optional support for
asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio] and twisted [https://twistedmatrix.com/documents/current/api/twisted.html]. Checkout this
example on GitHub [https://github.com/prkumar/uplink/tree/master/examples/async-requests]
for more.

Deserializing the Response Body

Uplink makes it easy and optional to convert HTTP response bodies into
data model objects, whether you leverage Uplink’s built-in support for
libraries such as marshmallow [https://marshmallow.readthedocs.io/en/latest/quickstart.html#module-marshmallow] (see
uplink.converters.MarshmallowConverter) or use
uplink.loads to write custom conversion logic that fits your
unique needs.

At the least, you need to specify the expected return type using a
decorator from the uplink.returns module.
uplink.returns.json is handy when working with APIs that
provide JSON responses:

@returns.json(User)
@get("users/{username}")
def get_user(self, username): pass

Python 3 users can alternatively use a return type hint:

@returns.json
@get("users/{username}")
def get_user(self, username) -> User: pass

The final step is to register a strategy that converts the HTTP response
into the expected return type. To this end, uplink.loads() can
register a function that handles such deserialization for a particular
class and all its subclasses.

The base class for all model types, including User from above.
from models import ModelBase

Tell Uplink how to deserialize JSON responses into our model classes:
@loads.install # Make this available to all consumer instances.
@loads.from_json(ModelBase)
def load_model_from_json(model_cls, json_obj):
 return model_cls.from_json(json_obj)

This step is not required if you define your data model objects using a library
for whom Uplink has built-in support, such as marshmallow [https://marshmallow.readthedocs.io/en/latest/quickstart.html#module-marshmallow] (see
uplink.converters.MarshmallowConverter).

Note

For API endpoints that return collections (such as a list of users),
Uplink just needs to know how to deserialize the element type (e.g.,
a user), offering built-in support for Converting Collections.

Custom Response and Error Handling

New in version 0.4.0.

To register a custom response or error handler, decorate a function with
the response_handler or error_handler decorator.

Note

Unlike consumer methods, these functions should be defined outside
of a class scope.

For instance, the function returns_success() defined below is a
response handler that output whether or not the request was successful:

@uplink.response_handler
def returns_success(response):
 return response.status == 200

Now, returns_success() can be used as a decorator to inject its custom
response handling into any request method:

@returns_success
@put("/todos")
def create_todo(self, title):
 """Creates a todo with the given title."""

To apply the function’s handling onto all request methods of a
Consumer subclass, we can simply use the registered
handler as a class decorator:

@returns_success
class TodoApp(uplink.Consumer):
 ...

Similarly, functions decorated with error_handler are registered
error handlers. When applied to a request method, these handlers are
invoked when the underlying HTTP client fails to execute a request:

@error_handler
def raise_api_error(exc_type, exc_val, exc_tb):
 # wrap client error with custom API error
 ...

Notably, handlers can be stacked on top of one another to chain their
behavior:

@raise_api_error
@returns_success
class TodoApp(uplink.Consumer):
 ...

Annotating __init__() Arguments

New in version 0.4.0.

Function annotations like Query and Header can
be used with constructor arguments of a Consumer subclass.
When a new consumer instance is created, the value of these arguments are
applied to all requests made through that instance.

For example, the following consumer accepts the API access token as the
constructor argument access_token:

class GitHub(uplink.Consumer):

 def __init__(self, access_token: uplink.Query):
 ...

 @uplink.post("/user")
 def update_user(self, **info: Body):
 """Update the authenticated user"""

Now, all requests made from an instance of this consumer class will be
authenticated with the access token passed in at initialization:

github = TodoApp("my-github-access-token")

This request will include the above access token as a query parameter.
github.update_user(bio="Beam me up, Scotty!")

_inject() Request Properties

New in version 0.4.0.

As an alternative to Annotating __init__() Arguments, you can achieve
a similar behavior with more control by using the
Consumer._inject() method. With this method, you can calculate
request properties within plain old python methods.

class TodoApp(uplink.Consumer):

 def __init__(self, username, password)
 # Create an access token
 api_key = create_api_key(username, password)

 # Inject it.
 self._inject(uplink.Query("api_key").with_value(api_key))

Similar to the annotation style, request properties added with
_inject() method are applied to all requests made
through the consumer instance.

Authentication

This section covers how to do authentication with Uplink.

Basic Authentication

In v0.4, we added the auth parameter to the
uplink.Consumer constructor.

Now it’s simple to construct a consumer that uses HTTP Basic
Authentication with all requests:

github = GitHub(BASE_URL, auth=("user", "pass"))

Other Authentication

Often, APIs accept credentials as header values or query parameters.
Your request method can handle these types of authentication by simply
accepting the user’s credentials as an argument:

@post("/user")
def update_user(self, access_token: Query, **info: Body):
 """Update the user associated to the given access token."""

If more than one request requires authentication, you can make the token
an argument of your consumer constructor (see Annotating __init__() Arguments):

class GitHub(Consumer):

 def __init__(self, base_url, access_token: Query)
 ...

Using Auth Support for Requests and aiohttp

As we work towards Uplink’s v1.0 release, improving built-in support for other
types of authentication is a continuing goal.

With that said, if Uplink currently doesn’t offer a solution for you
authentication needs, you can always leverage the available auth support for
the underlying HTTP client.

For instance, requests [http://docs.python-requests.org/en/master/api/#module-requests] offers out-of-the-box support for
making requests with HTTP Digest Authentication, which you can leverage
like so:

from requests.auth import HTTPDigestAuth

client = uplink.RequestsClient(cred=HTTPDigestAuth("user", "pass"))
api = MyApi(BASE_URL, client=client)

You can also use other third-party libraries that extend auth support
for the underlying client. For instance, you can use requests-oauthlib [https://github.com/requests/requests-oauthlib] for doing OAuth with
Requests:

from requests_oauthlib import OAuth2Session

session = OAuth2Session(...)
api = MyApi(BASE_URL, client=session)

Tips & Tricks

Here are a few ways to simplify consumer definitions.

Decorating All Request Methods in a Class

To apply a decorator across all methods in a class, you can simply
decorate the class rather than each method individually:

 @uplink.timeout(60)
 class GitHub(uplink.Consumer):
 @uplink.get("/repositories")
 def get_repos(self):
 """Dump every public repository."""

 @uplink.get("/organizations")
 def get_organizations(self):
 """List all organizations."""

Hence, the consumer defined above is equivalent to the following,
slightly more verbose definition:

class GitHub(uplink.Consumer):
 @uplink.timeout(60)
 @uplink.get("/repositories")
 def get_repos(self):
 """Dump every public repository."""

 @uplink.timeout(60)
 @uplink.get("/organizations")
 def get_organizations(self):
 """List all organizations."""

Adopting the Argument’s Name

Several function argument annotations accept a name parameter
on construction. For instance, the Path annotation
uses the name parameter to associate the function argument to
a URI path parameter:

class GitHub(uplink.Consumer):
 @uplink.get("users/{username}")
 def get_user(self, username: uplink.Path("username")): pass

For such annotations, you can omit the name parameter to have the
annotation adopt the name of its corresponding method argument.

For instance, from the previous example, we can omit naming the
Path annotation since the corresponding argument’s
name, username, matches the intended URI path parameter.

class GitHub(uplink.Consumer):
 @uplink.get("users/{username}")
 def get_user(self, username: uplink.Path): pass

Some annotations that support this behavior include:
Path, uplink.Field, Part
Header, and uplink.Query.

Annotating Your Arguments For Python 2.7

There are several ways to annotate arguments. Most examples in this
documentation use function annotations, but this approach is unavailable
for Python 2.7 users. Instead, you should either utilize the method
annotation args or use the optional args
parameter of the HTTP method decorators (e.g., uplink.get).

Using uplink.args

One approach for Python 2.7 users involves using the method annotation
args, arranging annotations in the same order as
their corresponding function arguments (again, ignore self):

 class GitHub(uplink.Consumer):
 @uplink.args(uplink.Url, uplink.Path)
 @uplink.get
 def get_commit(self, commits_url, sha): pass

The args argument

New in version v0.5.0.

The HTTP method decorators (e.g., uplink.get) support an
optional positional argument args, which accepts a
list of annotations, arranged in the same order as their corresponding
function arguments,

 class GitHub(uplink.Consumer):
 @uplink.get(args=(uplink.Url, uplink.Path))
 def get_commit(self, commits_url, sha): pass

or a mapping of argument names to annotations:

 class GitHub(uplink.Consumer):
 @uplink.get(args={"commits_url": uplink.Url, "sha": uplink.Path})
 def get_commit(self, commits_url, sha): pass

Function Annotations (Python 3 only)

When using Python 3, you can use these classes as function annotations
(PEP 3107 [https://www.python.org/dev/peps/pep-3107]):

 class GitHub(uplink.Consumer):
 @uplink.get
 def get_commit(self, commit_url: uplink.Url, sha: uplink.Path):
 pass

Decorators

The method decorators detailed in this section describe request properties that
are relevant to all invocations of a consumer method.

headers

	
class uplink.headers(arg, **kwargs)

	A decorator that adds static headers for API calls.

@headers({"User-Agent": "Uplink-Sample-App})
@get("/user")
def get_user(self):
 """Get the current user"""

When used as a class decorator, headers applies to
all consumer methods bound to the class:

@headers({"Accept": "application/vnd.github.v3.full+json")
class GitHub(Consumer):
 ...

headers takes the same arguments as dict [https://docs.python.org/3/library/stdtypes.html#dict].

	Parameters

	
	*arg – A dict containing header values.

	**kwargs – More header values.

json

	
class uplink.json

	Use as a decorator to make JSON requests.

You can annotate a method argument with uplink.Body,
which indicates that the argument’s value should become the
request’s body. uplink.Body has to be either a dict or a
subclass of py:class:collections.Mapping.

Example

@json
@patch(/user")
def update_user(self, **info: Body):
 """Update the current user."""

You can alternatively use the uplink.Field annotation to
specify JSON fields separately, across multiple arguments:

Example:
.. code-block:: python

@json
@patch(/user”)
def update_user(self, name: Field, email: Field(“e-mail”):

“”“Update the current user.”“”

Further, to set a nested field, you can specify the path of the
target field with a tuple of strings as the first argument of
uplink.Field.

Example

Consider a consumer method that sends a PATCH request with a JSON
body of the following format:

{
 user: {
 name: "<User's Name>"
 },
}

The tuple ("user", "name") specifies the path to the
highlighted inner field:

@json
@patch(/user")
def update_user(
 self,
 new_name: Field(("user", "name"))
):
 """Update the current user."""

form_url_encoded

	
class uplink.form_url_encoded

	URL-encodes the request body.

Used on POST/PUT/PATCH request. It url-encodes the body of the
message and sets the appropriate Content-Type header. Further,
each field argument should be annotated with
uplink.Field.

Example

@form_url_encoded
@post("/users/edit")
def update_user(self, first_name: Field, last_name: Field):
 """Update the current user."""

multipart

	
class uplink.multipart

	Sends multipart form data.

Multipart requests are commonly used to upload files to a server.
Further, annotate each part argument with Part.

Example

@multipart
@put(/user/photo")
def update_user(self, photo: Part, description: Part):
 """Upload a user profile photo."""

timeout

	
class uplink.timeout(seconds)

	Time to wait for a server response before giving up.

When used on other decorators it specifies how long (in secs) a
decorator should wait before giving up.

Example

@timeout(60)
@get("/user/posts")
def get_posts(self):
 """Fetch all posts for the current users."""

When used as a class decorator, timeout applies to all
consumer methods bound to the class.

	Parameters

	seconds (int [https://docs.python.org/3/library/functions.html#int]) – An integer used to indicate how long should the
request wait.

args

	
class uplink.args(*annotations, **more_annotations)

	Annotate method arguments for Python 2.7 compatibility.

Arrange annotations in the same order as their corresponding
function arguments.

Example

@args(Path, Query)
@get("/users/{username})
def get_user(self, username, visibility):
 """Get a specific user."""

Use keyword args to target specific method parameters.

Example

@args(visibility=Query)
@get("/users/{username})
def get_user(self, username, visibility):
 """Get a specific user."""

	Parameters

	
	*annotations – Any number of annotations.

	**more_annotations – More annotations, targeting specific method
arguments.

response_handler

	
class uplink.response_handler(func)

	A decorator for creating custom response handlers.

To register a function as a custom response handler, decorate the
function with this class. The decorated function should accept a single
positional argument, an HTTP response object:

Example

@response_handler
def raise_for_status(response):
 response.raise_for_status()
 return response

Then, to apply custom response handling to a request method, simply
decorate the method with the registered response handler:

Example

@raise_for_status
@get("/user/posts")
def get_posts(self):
 """Fetch all posts for the current users."""

To apply custom response handling on all request methods of a
uplink.Consumer subclass, simply decorate the class with
the registered response handler:

Example

@raise_for_status
class GitHub(Consumer):
 ...

New in version 0.4.0.

error_handler

	
class uplink.error_handler(func)

	A decorator for creating custom error handlers.

To register a function as a custom error handler, decorate the
function with this class. The decorated function should accept three
positional arguments: (1) the type of the exception, (2) the
exception instance raised, and (3) a traceback instance.

Example

@error_handler
def raise_api_error(exc_type, exc_val, exc_tb):
 # wrap client error with custom API error
 ...

Then, to apply custom error handling to a request method, simply
decorate the method with the registered error handler:

Example

@raise_api_error
@get("/user/posts")
def get_posts(self):
 """Fetch all posts for the current users."""

To apply custom error handling on all request methods of a
uplink.Consumer subclass, simply decorate the class with
the registered error handler:

Example

@raise_api_error
class GitHub(Consumer):
 ...

New in version 0.4.0.

Note

Error handlers can not completely suppress exceptions. The
original exception is thrown if the error handler doesn’t throw
anything.

inject

	
class uplink.inject(*hooks)

	A decorator that applies one or more hooks to a request method.

Example

@inject(Query("sort").with_value("pushed"))
@get("users/{user}/repos")
def list_repos(self, user):
 """Lists user's public repos by latest pushed."""

New in version 0.4.0.

returns.*

Converting an HTTP response body into a custom Python object is
straightforward with Uplink; the uplink.returns modules
exposes optional decorators for defining the expected return type and
data serialization format for any consumer method.

	
uplink.returns.from_json

	alias of json

	
class uplink.returns.json(model=None, member=())

	Specifies that the decorated consumer method should return a JSON
object. If a model is provided, the resulting JSON object
is converted into the model object using an appropriate
converter (see uplink.loads.from_json()).

This method will return a JSON object (e.g., a dict or list)
@returns.json
@get("/users/{username}")
def get_user(self, username):
 """Get a specific user."""

Returning a Specific JSON Field:

This decorator accepts two optional arguments. The
member argument accepts a string or tuple that
specifies the path of an internal field in the JSON document.

For instance, consider an API that returns JSON responses that,
at the root of the document, contains both the server-retrieved
data and a list of relevant API errors:

{
 "data": { "user": "prkumar", "id": 140232 },
 "errors": []
}

If returning the list of errors is unnecessary, we can use the
member argument to strictly return the inner field
data:

@returns.json(member="data")
@get("/users/{username}")
def get_user(self, username):
 """Get a specific user."""

Deserialize Objects from JSON:

Often, JSON responses represent models in your application. If
an existing Python object encapsulates this model, use the
model argument to specify it as the return type:

@returns.json(model=User)
@get("/users/{username}")
def get_user(self, username):
 """Get a specific user."""

For Python 3 users, you can alternatively provide a return value
annotation. Hence, the previous code is equivalent to the
following in Python 3:

@returns.json
@get("/users/{username}")
def get_user(self, username) -> User:
 """Get a specific user."""

Both usages typically require also registering a converter that
knows how to deserialize the JSON into your data model object
(see uplink.loads.from_json()). This step is
unnecessary if these objects are defined using a library for
whom Uplink has built-in support, such as marshmallow [https://marshmallow.readthedocs.io/en/latest/quickstart.html#module-marshmallow]
(see uplink.converters.MarshmallowConverter).

New in version v0.5.0.

	
class uplink.returns.model(type)

	Specifies that the function returns a specific class.

In Python 3, to provide a consumer method’s return type, you can
set it as the method’s return annotation:

@get("/users/{username}")
def get_user(self, username) -> UserSchema:
 """Get a specific user."""

For Python 2.7 compatibility, you can use this decorator instead:

@returns.model(UserSchema)
@get("/users/{username}")
def get_user(self, username):
 """Get a specific user."""

To have Uplink convert response bodies into the desired type, you
will need to define an appropriate converter (e.g., using
uplink.loads).

New in version v0.5.1.

Function Annotations

For programming in general, function parameters drive a function’s
dynamic behavior; a function’s output depends normally on its inputs.
With uplink, function arguments parametrize an HTTP request,
and you indicate the dynamic parts of the request by appropriately
annotating those arguments with the classes detailed in this section.

Path

	
class uplink.Path(name=None, type=None)

	Substitution of a path variable in a URI template [https://tools.ietf.org/html/rfc6570].

URI template parameters are enclosed in braces (e.g.,
{name}). To map an argument to a declared URI parameter, use
the Path annotation:

class TodoService(object):
 @get("/todos{/id}")
 def get_todo(self, todo_id: Path("id")): pass

Then, invoking get_todo with a consumer instance:

todo_service.get_todo(100)

creates an HTTP request with a URL ending in /todos/100.

Note

Any unannotated function argument that shares a name with a URL path
parameter is implicitly annotated with this class at runtime.

For example, we could simplify the method from the previous
example by matching the path variable and method argument names:

@get("/todos{/id}")
def get_todo(self, id): pass

Query

	
class uplink.Query(name=None, encoded=False, type=None)

	Set a dynamic query parameter.

This annotation turns argument values into URL query
parameters. You can include it as function argument
annotation, in the format: <query argument>: uplink.Query.

If the API endpoint you are trying to query uses q as a query
parameter, you can add q: uplink.Query to the consumer method to
set the q search term at runtime.

Example

@get("/search/commits")
def search(self, search_term: Query("q")):
 '''Search all commits with the given search term.'''

To specify whether or not the query parameter is already URL encoded,
use the optional encoded argument:

@get("/search/commits")
def search(self, search_term: Query("q", encoded=True)):
 """Search all commits with the given search term."""

	Parameters

	encoded (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Specifies whether the parameter
name and value are already URL encoded.

	
with_value(value)

	Creates an object that can be used with the
Consumer._inject method or
inject decorator to inject request properties
with specific values.

New in version 0.4.0.

QueryMap

	
class uplink.QueryMap(encoded=False, type=None)

	A mapping of query arguments.

If the API you are using accepts multiple query arguments, you can
include them all in your function method by using the format:
<query argument>: uplink.QueryMap

Example

@get("/search/users")
def search(self, **params: QueryMap):
 """Search all users."""

	Parameters

	encoded (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Specifies whether the parameter
name and value are already URL encoded.

	
with_value(value)

	Creates an object that can be used with the
Consumer._inject method or
inject decorator to inject request properties
with specific values.

New in version 0.4.0.

Header

	
class uplink.Header(name=None, type=None)

	Pass a header as a method argument at runtime.

While uplink.headers attaches static headers
that define all requests sent from a consumer method, this
class turns a method argument into a dynamic header value.

Example

@get("/user")
def (self, session_id: Header("Authorization")):
 """Get the authenticated user"""

	
with_value(value)

	Creates an object that can be used with the
Consumer._inject method or
inject decorator to inject request properties
with specific values.

New in version 0.4.0.

HeaderMap

	
class uplink.HeaderMap(type=None)

	Pass a mapping of header fields at runtime.

	
with_value(value)

	Creates an object that can be used with the
Consumer._inject method or
inject decorator to inject request properties
with specific values.

New in version 0.4.0.

Field

	
class uplink.Field(name=None, type=None)

	Defines a form field to the request body.

Use together with the decorator uplink.form_url_encoded
and annotate each argument accepting a form field with
uplink.Field.

	Example::

	@form_url_encoded
@post("/users/edit")
def update_user(self, first_name: Field, last_name: Field):
 """Update the current user."""

FieldMap

	
class uplink.FieldMap(type=None)

	Defines a mapping of form fields to the request body.

Use together with the decorator uplink.form_url_encoded
and annotate each argument accepting a form field with
uplink.FieldMap.

Example

@form_url_encoded
@post("/user/edit")
def create_post(self, **user_info: FieldMap):
 """Update the current user."""

Part

	
class uplink.Part(name=None, type=None)

	Marks an argument as a form part.

Use together with the decorator uplink.multipart and
annotate each form part with uplink.Part.

Example

@multipart
@put(/user/photo")
def update_user(self, photo: Part, description: Part):
 """Upload a user profile photo."""

PartMap

	
class uplink.PartMap(type=None)

	A mapping of form field parts.

Use together with the decorator uplink.multipart and
annotate each part of form parts with uplink.PartMap

Example

@multipart
@put(/user/photo")
def update_user(self, photo: Part, description: Part):
 """Upload a user profile photo."""

Body

	
class uplink.Body(type=None)

	Set the request body at runtime.

Use together with the decorator uplink.json. The method
argument value will become the request’s body when annotated
with uplink.Body.

Example

@json
@patch(/user")
def update_user(self, **info: Body):
 """Update the current user."""

Url

	
class uplink.Url

	Sets a dynamic URL.

Provides the URL at runtime as a method argument. Drop the decorator
parameter path from uplink.get and annotate the
corresponding argument with uplink.Url

Example

@get
def get(self, endpoint: Url):
 """Execute a GET requests against the given endpoint"""

HTTP Clients

The client parameter of the Consumer constructor offers a way
to swap out Requests with another HTTP client, including those listed here:

github = GitHub(BASE_URL, client=...)

Requests

	
class uplink.RequestsClient(session=None, **kwargs)

	A requests [http://docs.python-requests.org/en/master/api/#module-requests] client that returns
requests.Response [http://docs.python-requests.org/en/master/api/#requests.Response] responses.

	Parameters

	session (requests.Session [http://docs.python-requests.org/en/master/api/#requests.Session], optional) – The session
that should handle sending requests. If this argument is
omitted or set to None [https://docs.python.org/3/library/constants.html#None], a new session will be
created.

Aiohttp

	
class uplink.AiohttpClient(session=None, **kwargs)

	An aiohttp [https://aiohttp.readthedocs.io/en/stable/structures.html#module-aiohttp] client that creates awaitable responses.

Note

This client is an optional feature and requires the aiohttp [https://aiohttp.readthedocs.io/en/stable/structures.html#module-aiohttp]
package. For example, here’s how to install this extra using pip:

$ pip install uplink[aiohttp]

	Parameters

	session (aiohttp.ClientSession [https://aiohttp.readthedocs.io/en/stable/client_reference.html#aiohttp.ClientSession], optional) – The session that should handle sending requests. If this
argument is omitted or set to None [https://docs.python.org/3/library/constants.html#None], a new session
will be created.

Twisted

	
class uplink.TwistedClient(session=None)

	Client that returns twisted.internet.defer.Deferred [https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html]
responses.

Note

This client is an optional feature and requires the twisted [https://twistedmatrix.com/documents/current/api/twisted.html]
package. For example, here’s how to install this extra using pip:

$ pip install uplink[twisted]

	Parameters

	session (requests.Session [http://docs.python-requests.org/en/master/api/#requests.Session], optional) – The session
that should handle sending requests. If this argument is
omitted or set to None [https://docs.python.org/3/library/constants.html#None], a new session will be
created.

Converters

The converter parameter of the uplink.Consumer constructor
accepts a custom adapter class that handles serialization of HTTP
request properties and deserialization of HTTP response objects:

github = GitHub(BASE_URL, converter=...)

Starting with version v0.5, some out-of-the-box converters are included
automatically and don’t need to be explicitly provided through the
converter parameter. These implementations are detailed below.

Marshmallow

Uplink comes with optional support for marshmallow [https://marshmallow.readthedocs.io/en/latest/quickstart.html#module-marshmallow].

	
class uplink.converters.MarshmallowConverter

	A converter that serializes and deserializes values using
marshmallow [https://marshmallow.readthedocs.io/en/latest/quickstart.html#module-marshmallow] schemas.

To deserialize JSON responses into Python objects with this
converter, define a marshmallow.Schema [https://marshmallow.readthedocs.io/en/latest/api_reference.html#marshmallow.Schema] subclass and set
it as the return annotation of a consumer method:

@get("/users")
def get_users(self, username) -> UserSchema():
 '''Fetch a single user'''

Note

This converter is an optional feature and requires the
marshmallow [https://marshmallow.readthedocs.io/en/latest/quickstart.html#module-marshmallow] package. For example, here’s how to
install this feature using pip:

$ pip install uplink[marshmallow]

Note

Starting with version v0.5, this converter factory is automatically
included if you have marshmallow [https://marshmallow.readthedocs.io/en/latest/quickstart.html#module-marshmallow] installed, so you don’t need
to provide it when constructing your consumer instances.

Converting Collections

New in version v0.5.0.

Uplink can convert collections of a type, such as deserializing a
response body into a list of users. If you have typing [https://docs.python.org/3/library/typing.html#module-typing]
installed (the module is part of the standard library starting Python
3.5), you can use type hints (see PEP 484 [https://www.python.org/dev/peps/pep-0484]) to specify such
conversions. You can also leverage this feature without typing [https://docs.python.org/3/library/typing.html#module-typing]
by using one of the proxy types defined in uplink.types.

The following converter factory implements this feature and is automatically
included, so you don’t need to provide it when constructing your consumer
instance:

	
class uplink.converters.TypingConverter

	An adapter that serializes and deserializes collection types from
the typing [https://docs.python.org/3/library/typing.html#module-typing] module, such as typing.List [https://docs.python.org/3/library/typing.html#typing.List].

Inner types of a collection are recursively resolved, using other
available converters if necessary. For instance, when resolving the
type hint typing.Sequence[UserSchema], where
UserSchema is a custom marshmallow.Schema [https://marshmallow.readthedocs.io/en/latest/api_reference.html#marshmallow.Schema]
subclass, the converter will resolve the inner type using
uplink.converters.MarshmallowConverter.

@get("/users")
def get_users(self) -> typing.Sequence[UserSchema]:
 '''Fetch all users.'''

Note

The typing [https://docs.python.org/3/library/typing.html#module-typing] module is available in the standard library
starting from Python 3.5. For earlier versions of Python, there
is a port of the module available on PyPI.

However, you can utilize this converter without the
typing [https://docs.python.org/3/library/typing.html#module-typing] module by using one of the proxies defined by
uplink.returns (e.g., uplink.types.List).

Here are the collection types defined in uplink.types. You can
use these or the corresponding type hints from typing to leverage
this feature:

	
uplink.types.List

	list() -> new empty list
list(iterable) -> new list initialized from iterable’s items
A proxy for typing.List [https://docs.python.org/3/library/typing.html#typing.List] that is safe to use in type
hints with Python 3.4 and below.

@get("/users")
def get_users(self) -> types.List[str]:
 """Fetches all users"""

	
uplink.types.Dict

	dict() -> new empty dictionary
dict(mapping) -> new dictionary initialized from a mapping object’s

(key, value) pairs

	dict(iterable) -> new dictionary initialized as if via:

	d = {}
for k, v in iterable:

d[k] = v

	dict(**kwargs) -> new dictionary initialized with the name=value pairs

	in the keyword argument list. For example: dict(one=1, two=2)

A proxy for typing.Dict [https://docs.python.org/3/library/typing.html#typing.Dict] that is safe to use in type
hints with Python 3.4 and below.

@returns.json
@get("/users")
def get_users(self) -> types.Dict[str, str]:
 """Fetches all users"""

Writing a Custom Converter

You can define custom converters by using uplink.loads and
uplink.dumps.

These classes can be used as decorators to create converters of a class
and its subclasses:

Registers the function as a loader for the given model class.
@loads.from_json(Model)
def load_model_from_json(model_type, json):
 ...

To use the converter, you can generated converter object when
instantiating a Consumer subclass, through the
converter constructor parameter:

github = GitHub(BASE_URL, converter=load_model_from_json)

Alternatively, you can add the uplink.loads.install() or
uplink.dumps.install() decorator to register the converter
function as a default converter, meaning the converter will be included
automatically with any consumer instance and doesn’t need to be
explicitly provided through the converter parameter:

Register the function as a default loader for the given model class.
@loads.install
@loads.from_json(Model)
def load_model_from_json(model_type, json):
 ...

	
class uplink.loads(base_class, annotations=())

	Builds a custom object deserializer.

This class takes a single argument, the base model class, and
registers the decorated function as a deserializer for that base
class and all subclasses.

Further, the decorated function should accept two positional
arguments: (1) the encountered type (which can be the given base
class or a subclass), and (2) the response data.

@loads(ModelBase)
def load_model(model_cls, data):
 ...

New in version v0.5.0.

	
classmethod from_json(base_class, annotations=())

	Builds a custom JSON deserialization strategy.

This decorator accepts the same arguments and behaves like
uplink.loads, except that the second argument of the
decorated function is a JSON object:

@loads.from_json(ModelBase)
def from_json(model_cls, json_object):
 return model_cls.from_json(json_object)

Notably, only consumer methods that have the expected return type
(i.e., the given base class or any subclass) and are decorated with
uplink.returns.json can leverage the registered strategy
to deserialize JSON responses.

For example, the following consumer method would leverage the
from_json() strategy defined above, given
User is a subclass of ModelBase:

@returns.json
@get("user")
def get_user(self) -> User: pass

New in version v0.5.0.

	
class uplink.dumps(base_class, annotations=())

	Builds a custom object serializer.

This decorator takes a single argument, the base model class, and
registers the decorated function as a serializer for that base
class and all subclasses.

Further, the decorated function should accept two positional
arguments: (1) the encountered type (which can be the given base
class or a subclass), and (2) the encountered instance.

@dumps(ModelBase)
def deserialize_model(model_cls, model_instance):
 ...

New in version v0.5.0.

	
classmethod to_json(base_class, annotations=())

	Builds a custom JSON serialization strategy.

This decorator accepts the same arguments and behaves like
uplink.dumps. The only distinction is that the
decorated function should be JSON serializable.

@dumps.to_json(ModelBase)
def to_json(model_cls, model_instance):
 return model_instance.to_json()

Notably, only consumer methods that are decorated with
py:class:uplink.json and have one or more argument annotations
with the expected type (i.e., the given base class or a subclass)
can leverage the registered strategy.

For example, the following consumer method would leverage the
to_json() strategy defined above, given
User is a subclass of ModelBase:

@json
@post("user")
def change_user_name(self, name: Field(type=User): pass

New in version v0.5.0.

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [http://keepachangelog.com/en/1.0.0/], and this project adheres to the
Semantic Versioning [https://packaging.python.org/tutorials/distributing-packages/#semantic-versioning-preferred] scheme.

0.5.5 [https://github.com/prkumar/uplink/compare/v0.5.4...v0.5.5] - 2018-8-01

Fixed

	Issue with sending JSON list Body using @json annotation.

0.5.4 [https://github.com/prkumar/uplink/compare/v0.5.3...v0.5.4] - 2018-6-26

Fixed

	When using uplink.AiohttpClient with aiohttp>=3.0, the underlying
aiohttp.ClientSession would remain open on program exit.

0.5.3 [https://github.com/prkumar/uplink/compare/v0.5.2...v0.5.3] - 2018-5-31

Fixed

	Issue where adding two or more response handlers (i.e., functions decorated
with uplink.response_handler) to a method caused a ``TypeError`.

0.5.2 [https://github.com/prkumar/uplink/compare/v0.5.1...v0.5.2] - 2018-5-30

Fixed

	Applying returns.json decorator without arguments should produce JSON
responses when the decorated method is lacking a return value annotation.

0.5.1 [https://github.com/prkumar/uplink/compare/v0.5.0...v0.5.1] - 2018-4-10

Added

	Decorator uplink.returns.model for specifying custom return type without
indicating a specific data deserialization format.

Fixed

	Have uplink.Body decorator accept any type, not just mappings.

	Reintroduce the uplink.returns decorator.

0.5.0 [https://github.com/prkumar/uplink/compare/v0.4.1...v0.5.0] - 2018-4-06

Added

	Decorators for convenient registration of custom serialization.
(uplink.dumps) and deserialization (uplink.loads) strategies.

	Support for setting nested JSON fields with uplink.Field and
uplink.json.

	Optional args parameter to HTTP method decorators (e.g., uplink.get)
for another Python 2.7-compatible alternative to annotating consumer method
arguments with function annotations.

	Decorator uplink.returns.json for converting HTTP response bodies into
JSON objects or custom Python objects.

	Support for converting collections (e.g., converting a response body into a
list of users).

Changed

	Leveraging built-in converters (such as uplink.converters.MarshmallowConverter)
no longer requires providing the converter when instantiating an
uplink.Consumer subclass, as these converters are now implicitly included.

Fixed

	uplink.response_handler and uplink.error_handler properly
adopts the name and docstring of the wrapped function.

0.4.1 [https://github.com/prkumar/uplink/compare/v0.4.0...v0.4.1] - 2018-3-10

Fixed

	Enforce method-level decorators override class-level decorators when they conflict.

0.4.0 [https://github.com/prkumar/uplink/compare/v0.3.0...v0.4.0] - 2018-2-10

Added

	Support for Basic Authentication.

	The response_handler decorator for defining custom response handlers.

	The error_handler decorator for defining custom error handlers.

	The inject decorator for injecting other kinds of middleware.

	The Consumer._inject method for adding middleware to a consumer
instance.

	Support for annotating constructor arguments of a Consumer subclass
with built-in function annotations like Query and Header.

0.3.0 [https://github.com/prkumar/uplink/compare/v0.2.2...v0.3.0] - 2018-1-09

Added

	HTTP HEAD request decorator by @brandonio21 [https://github.com/brandonio21].

	Support for returning deserialized response objects using marshmallow
schemas.

	Constructor parameter for Query and QueryMap to
support already encoded URL parameters.

	Support for using requests.Session and aiohttp.ClientSession
instances with the client parameter of the Consumer
constructor.

Changed

	aiohttp and twisted are now optional dependencies/extras.

Fixed

	Fix for calling a request method with super, by @brandonio21 [https://github.com/brandonio21].

	Fix issue where method decorators would incorrectly decorate inherited
request methods.

0.2.2 [https://github.com/prkumar/uplink/compare/v0.2.0...v0.2.2] - 2017-11-23

Fixed

	Fix for error raised when an object that is not a class is passed into the
client parameter of the Consumer constructor, by @kadrach [https://github.com/kadrach].

0.2.0 [https://github.com/prkumar/uplink/compare/v0.1.1...v0.2.0] - 2017-11-03

Added

	The class uplink.Consumer by @itstehkman [https://github.com/itstehkman]. Consumer classes should
inherit this base.
class, and creating consumer instances happens through instantiation.

	Support for asyncio for Python 3.4 and above.

	Support for twisted for all supported Python versions.

Changed

	BREAKING: Invoking a consumer method now builds and executes the request,
removing the extra step of calling the execute method.

Deprecated

	Building consumer instances with uplink.build. Instead, Consumer classes
should inherit uplink.Consumer.

Fixed

	Header link for version 0.1.1 in changelog.

0.1.1 [https://github.com/prkumar/uplink/compare/v0.1.0...v0.1.1] - 2017-10-21

Added

	Contribution guide, CONTRIBUTING.rst.

	“Contributing” Section in README.rst that links to contribution guide.

	AUTHORS.rst file for listing project contributors.

	Adopt Contributor Covenant Code of Conduct [https://www.contributor-covenant.org/version/1/4/code-of-conduct.html].

Changed

	Replaced tentative contributing instructions in preview notice on
documentation homepage with link to contribution guide.

0.1.0 - 2017-10-19

Added

	Python ports for almost all method and argument annotations in Retrofit [http://square.github.io/retrofit/].

	Adherence to the variation of the semantic versioning scheme outlined in
the official Python package distribution tutorial.

	MIT License

	Documentation with introduction, instructions for installing, and quick
getting started guide covering the builder and all method and argument
annotations.

	README that contains GitHub API v3 example, installation instructions with
pip, and link to online documentation.

 Python Module Index

 u

 		 	

 		
 u	

 	[image: -]
 	
 uplink	

 	
 	
 uplink.returns	

Index

 A
 | B
 | D
 | E
 | F
 | H
 | I
 | J
 | L
 | M
 | P
 | Q
 | R
 | T
 | U
 | W

A

 	
 	AiohttpClient (class in uplink)

 	
 	args (class in uplink)

B

 	
 	Body (class in uplink)

D

 	
 	Dict (in module uplink.types)

 	
 	dumps (class in uplink)

E

 	
 	error_handler (class in uplink)

F

 	
 	Field (class in uplink)

 	FieldMap (class in uplink)

 	
 	form_url_encoded (class in uplink)

 	from_json (in module uplink.returns)

 	from_json() (uplink.loads class method)

H

 	
 	Header (class in uplink)

 	
 	HeaderMap (class in uplink)

 	headers (class in uplink)

I

 	
 	inject (class in uplink)

J

 	
 	json (class in uplink)

 	(class in uplink.returns)

L

 	
 	List (in module uplink.types)

 	
 	loads (class in uplink)

M

 	
 	MarshmallowConverter (class in uplink.converters)

 	
 	model (class in uplink.returns)

 	multipart (class in uplink)

P

 	
 	Part (class in uplink)

 	PartMap (class in uplink)

 	Path (class in uplink)

 	
 	
 Python Enhancement Proposals

 	PEP 3107

 	PEP 484

Q

 	
 	Query (class in uplink)

 	
 	QueryMap (class in uplink)

R

 	
 	RequestsClient (class in uplink)

 	
 	response_handler (class in uplink)

T

 	
 	timeout (class in uplink)

 	to_json() (uplink.dumps class method)

 	
 	TwistedClient (class in uplink)

 	TypingConverter (class in uplink.converters)

U

 	
 	uplink.returns (module)

 	
 	Url (class in uplink)

W

 	
 	with_value() (uplink.Header method)

 	(uplink.HeaderMap method)

 	(uplink.Query method)

 	(uplink.QueryMap method)

 _static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 Uplink 📡

 		
 Installation

 		
 Using pip

 		
 Download the Source Code

 		
 Extras

 		
 Introduction

 		
 Static Request Handling

 		
 Dynamic Request Handling

 		
 Quickstart

 		
 Request Method

 		
 URL Manipulation

 		
 Request Body

 		
 Form Encoded, Multipart, and JSON

 		
 Header Manipulation

 		
 Synchronous vs. Asynchronous

 		
 Deserializing the Response Body

 		
 Custom Response and Error Handling

 		
 Annotating __init__() Arguments

 		
 _inject() Request Properties

 		
 Authentication

 		
 Basic Authentication

 		
 Other Authentication

 		
 Using Auth Support for Requests and aiohttp

 		
 Tips & Tricks

 		
 Decorating All Request Methods in a Class

 		
 Adopting the Argument’s Name

 		
 Annotating Your Arguments For Python 2.7

 		
 Using uplink.args

 		
 The args argument

 		
 Function Annotations (Python 3 only)

 		
 Decorators

 		
 headers

 		
 json

 		
 form_url_encoded

 		
 multipart

 		
 timeout

 		
 args

 		
 response_handler

 		
 error_handler

 		
 inject

 		
 returns.*

 		
 Function Annotations

 		
 Path

 		
 Query

 		
 QueryMap

 		
 Header

 		
 HeaderMap

 		
 Field

 		
 FieldMap

 		
 Part

 		
 PartMap

 		
 Body

 		
 Url

 		
 HTTP Clients

 		
 Requests

 		
 Aiohttp

 		
 Twisted

 		
 Converters

 		
 Marshmallow

 		
 Converting Collections

 		
 Writing a Custom Converter

 		
 Changelog

 		
 0.5.5 - 2018-8-01

 		
 Fixed

 		
 0.5.4 - 2018-6-26

 		
 Fixed

 		
 0.5.3 - 2018-5-31

 		
 Fixed

 		
 0.5.2 - 2018-5-30

 		
 Fixed

 		
 0.5.1 - 2018-4-10

 		
 Added

 		
 Fixed

 		
 0.5.0 - 2018-4-06

 		
 Added

 		
 Changed

 		
 Fixed

 		
 0.4.1 - 2018-3-10

 		
 Fixed

 		
 0.4.0 - 2018-2-10

 		
 Added

 		
 0.3.0 - 2018-1-09

 		
 Added

 		
 Changed

 		
 Fixed

 		
 0.2.2 - 2017-11-23

 		
 Fixed

 		
 0.2.0 - 2017-11-03

 		
 Added

 		
 Changed

 		
 Deprecated

 		
 Fixed

 		
 0.1.1 - 2017-10-21

 		
 Added

 		
 Changed

 		
 0.1.0 - 2017-10-19

 		
 Added

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

